Гиалуроновая кислота для лица: эффект, цена, противопоказания, показания, плюсы, минусы. Синтез гиалуроновой кислоты механистические исследования и биотехнологические заявления Механизм действия гиалуроновой кислоты


Сайт предоставляет справочную информацию исключительно для ознакомления. Диагностику и лечение заболеваний нужно проходить под наблюдением специалиста. У всех препаратов имеются противопоказания. Консультация специалиста обязательна!

Гиалуроновая кислота представляет собой полимерную молекулу, состоящую из небольших соединений углеводной структуры. Данное соединение было открыто около 75 лет назад, и до сей поры интенсивно изучается химиками, биологами, фармацевтами, врачами и учеными других медико-биологических специальностей. Физические свойства гиалуроновой кислоты уникальны – она способна удерживать молекулы воды , образуя гелеобразную структуру, и кроме того, данное соединение участвует во многих важных процессах в организме человека и животных, таких, как например деление и миграция клеток, переключение генов, заживление ран, оплодотворение, рост и развитие плода, формирование злокачественных опухолей и т.д.

В настоящее время гиалуроновая кислота широко применяется в эстетической медицине (входит в состав косметических продуктов, таких, как крема, маски и другие, а также используется для проведения процедуры биоревитализации и иных манипуляций, направленных на замедление процессов старения и поддержание молодости тканей). Кроме эстетической области, гиалуроновая кислота широко используется в медицинской практике, например, в лечении заболеваний глаз и суставов, в комплексной терапии злокачественных опухолей, в заживлении ран и в иммунологии. Рассмотрим свойства и применение гиалуроновой кислоты в различных сферах (и эстетической, и медицинской).

Гиалуроновая кислота – общая характеристика, свойства и способы получения

Гиалуроновая кислота представляет собой полисахарид, а это означает, что ее молекула состоит из множества одинаковых небольших фрагментов, которые по своей структуре являются углеводами (простыми сахаридами). Простые сахара соединяются в цепочку и образуют длинную молекулу гиалуроновой кислоты. В зависимости от количества фрагментов, составляющих молекулу гиалуроновой кислоты, она может иметь различную массу и длину.

На основании массы молекулы выделяют две разновидности гиалуроновой кислоты – высокомолекулярную и низкомолекулярную . Высокомолекулярными разновидностями гиалуроновой кислоты являются молекулы с массой более 300 кДа. Все молекулы гиалуроновой кислоты с массой менее 300 кДа относятся к низкомолекулярным. Обе разновидности вещества обладают рядом одинаковых свойств, но в то же время некоторые другие физические свойства и биологическая роль высокомолекулярной и низкомолекулярной гиалуроновой кислот различны.

Так, и высокомолекулярная, и низкомолекулярная гиалуроновая кислота способны связывать и удерживать молекулы воды, образуя желеобразную массу. Данная желеобразная масса обладает некоторой вязкостью, позволяющей ей выполнять функцию идеального субстрата для любых жидкостей и смазок в организме (например, слюны, вагинальной и суставной смазки, околоплодных вод и т.д.), а также для внеклеточного матрикса, в котором протекают биохимические реакции и проходят другие важные процессы. Степень вязкости желеобразной массы, образуемой гиалуроновой кислотой, зависит от ее массы. Чем больше молекулярная масса молекулы гиалуроновой кислоты, тем более вязким будет желеобразная масса, образуемая ей в соединении с водой.

Внеклеточный матрикс, образованный желеобразной массой воды, удерживаемой гиалуроновой кислотой, представляет собой уникальную среду, соединяющую клетки органов и систем между собой, а также обеспечивающую их взаимодействие. По межклеточному матриксу движутся клетки и биологически активные вещества, попав в него из кровеносных сосудов. Именно благодаря желеобразному вязкому матриксу различные вещества могут добираться до каждой клетки органа или ткани, даже если рядом с ней не проходит кровеносный сосуд. То есть, какое-либо вещество или клетка выходит из кровеносного сосуда в межклеточный матрикс и по нему проходит до клеточных структур, лежащих глубоко в тканях и не контактирующих с кровеносными сосудами.

Кроме того, продукты жизнедеятельности клеток, токсины вирусов и бактерий , а также погибшие клеточные структуры удаляются из органов и тканей именно через межклеточный матрикс. Сначала они попадают в межклеточное вещество, затем движутся по нему по направлению к лимфатическим или кровеносным сосудам, достигнув которых, проникают в них и окончательно выводятся из организма. Подобное движение между клетками в межклеточном матриксе возможно именно благодаря его желеобразной консистенции, обеспечиваемой гиалуроновой кислотой.

Помимо этого, гиалуроновая кислота является необходимым компонентом внутрисуставной смазки и глазной жидкости, а также входит в состав дермы и соединительной ткани. Данное соединение придает вязкость внутрисуставной смазке и глазной жидкости, обеспечивая их оптимальные свойства. В дерме гиалуроновая кислота удерживает волокна коллагена и эластина в правильном положении, тем самым поддерживая тургор, эластичность и молодость кожи . Кроме того, за счет связывания воды гиалуроновая кислота обеспечивает оптимальное количество влаги в кожном покрове, что также предотвращает старение и появление морщин . В соединительной ткани гиалуроновая кислота также обеспечивает ее тургор, эластичность, растяжимость и достаточную увлажненность.

При недостатке гиалуроновой кислоты происходит пересыхание тканей из-за дефицита воды, которая не удерживается в них. В результате ткани истончаются, становятся ломкими, неэластичными и легко ломающимися, что приводит к их старению и развитию различных заболеваний. Также гиалуроновая кислота принимает участие в ряде очень важных процессов, таких, как миграция и размножение клеток, переключение генов, зачатие и последующий рост плода, формирование злокачественных опухолей, развитие иммунного ответа и т.д. Таким образом, переоценить свойства гиалуроновой кислоты, необходимые для нормального функционирования органов и тканей на клеточном уровне, просто невозможно.

В организме человека с массой тела 70 кг постоянно имеется около 15 граммов гиалуроновой кислоты. Причем ежедневно примерно 1/3 от общего количества гиалуроновой кислоты, находящейся в различных органах и тканях, расщепляется и утилизируется, а вместо нее образуются новые молекулы. Время полужизни молекул гиалуроновой кислоты в составе суставной смазки составляет от 1 до 30 недель, в эпидермисе и дерме – 1 – 2 дня, а в крови – несколько минут. С возрастом организм теряет способность синтезировать гиалуроновую кислоту в необходимом количестве, вследствие чего начинается процесс старения. Именно поэтому для замедления старения людям зрелого возраста необходимо получать гиалуроновую кислоту извне, с продуктами питания или с биологически активными добавками (БАДами).

Для применения в медицине и эстетической индустрии гиалуроновую кислоту получают в промышленных масштабах из двух видов сырья:
1. Ткани позвоночных животных;
2. Бактерии, образующие защитную капсулу из молекул гиалуроновой кислоты (например, гемолитические стрептококки типов А и В).

Для получения гиалуроновой кислоты наиболее часто используют следующие ткани позвоночных животных, которые содержат наибольшие количества данного вещества:

  • Гребни петухов;
  • Стекловидное тело глаза;
  • Синовиальная жидкость суставов;
  • Гиалиновый хрящ;
  • Пупочный канатик;
  • Эпидермис и дерма кожи;
  • Амниотическая жидкость.
Оптимальным сырьем для получения гиалуроновой кислоты являются гребни половозрелых кур и петухов.

Бактерии для получения гиалуроновой кислоты используются следующим образом – необходимый штамм помещают на питательную среду и обеспечивают ему идеальные условия для размножения. Когда питательная среда становится вязкой, это означает, что бактерии выработали достаточно большое количество гиалуроновой кислоты, которую нужно только выделить и очистить от примесей.

Гиалуроновая кислота, выделяемая из животного сырья и бактерий, имеет существенный недостаток – она содержит примеси белков и пептидов , которые невозможно удалить полностью даже после специальной обработки. Данные белки и пептиды могут провоцировать аллергические реакции у людей, что суживает сферу применения гиалуроновой кислоты.

Готовая гиалуроновая кислота выпускается фармацевтическими заводами в виде порошков и гранул, содержащих молекулы с различной массой. Данные порошки используют для приготовления растворов, которые затем вносят в состав кремов, масок, лекарственных препаратов и т.д. Перед применением готовые растворы гиалуроновой кислоты стерилизуют в автоклавах.

Биологическая роль гиалуроновой кислоты

Гиалуроновая кислота является полисахаридом с высокой степенью гидратированности (связанности с водой) и входит в состав межклеточного матрикса, благодаря чему обладает весьма разнообразными функциями и принимает участие в процессах размножения, миграции, узнавания и дифференцировки клеток различных органов и тканей.

В зависимости от количества и размеров молекул гиалуроновой кислоты в межклеточном матриксе формируются гели различной степени вязкости, которые в дальнейшем определяют свойства и функции тканей, органов, систем. Так, гели, образованные гиалуроновой кислотой, определяют количество воды в ткани, интенсивность обмена ионами в клетках (калия, натрия, магния, цинка и др.), скорость транспорта различных биологически активных веществ и токсинов, непроницаемость среды для молекул крупного размера и клеток и т.д.

Способность гиалуроновой кислоты делать какой-либо участок гелевой среды межклеточного матрикса непроницаемым для крупных молекул обеспечивает тканям защиту от токсинов и проникновения микробов (бактерий, простейших и грибков).

Удержание большого количества воды гиалуроновой кислотой создает эффекты несжимаемости и набухания, на основе которых реализуется эффективное противостояние различным механическим воздействиям, направленным на сдавление тканей и органов. Благодаря этому органы и ткани сохраняют свою форму и не поддаются сдавливанию, а, следовательно, и травматизации. Именно благодаря этому эффекту гиалуроновой кислоты мы можем, например, сдавливать кожу пальцами, не повреждая ее структур.

Вязкость суставной жидкости, создаваемая гиалуроновой кислотой, позволяет ей выступать в роли смазки для трущихся хрящевых поверхностей двух сочленяющихся костей, а также уменьшать негативное воздействие избыточного давления .

Именно водный раствор гиалуроновой кислоты является наполнителем стекловидного тела глаза, а также составной частью других структур данного органа. Гиалуроновая кислота очень важна для нормальной работы глаза, поскольку ее растворы прозрачны и стабильны, что и создает необходимую среду для прохождения луча света на сетчатку без каких-либо искажений.

Гиалуроновая кислота играет огромную роль в оплодотворении яйцеклетки. Дело в том, что выходя из яичника в период овуляции , яйцеклетка покрыта двумя защищающими ее структурами, которые называются блестящая оболочка (zonapellucida) и лучистый венец (coronaradiata). И блестящая оболочка, и лучистый венец в межклеточном матриксе содержат большое количество гиалуроновой кислоты, благодаря которой они, собственно, и существуют. Яйцеклетка способна к оплодотворению только до тех пор, пока ее лучистая корона и блестящая оболочка полностью целы. Как только лучистая корона разрушится в маточной трубе , яйцеклетка потеряет способность к оплодотворению и погибнет. Таким образом, при недостатке гиалуроновой кислоты в организме даже здоровые и полноценные яйцеклетки могут быть бесполезными, поскольку они быстро погибают в маточной трубе, будучи не способными к оплодотворению сперматозоидами.

Кроме того, после оплодотворения остатки блестящей оболочки с гиалуроновой кислотой предотвращают прилипание уже плодного яйца к стенкам маточной трубы, что является механизмом профилактики внематочной беременности .

Гиалуроновая кислота также играет огромную роль в последующем после оплодотворения росте плода. Дело в том, что целые молекулы и фрагменты гиалуроновой кислоты запускают процесс деления, миграции и созревания клеток в плодном яйце, а также формирования из них органов и систем.

Внутри клеток гиалуроновая кислота принимает участие в процессе деления, то есть, необходима для размножения и образования новых клеточных элементов взамен старых или поврежденных. Благодаря этому эффекту гиалуроновая кислота стимулирует процесс восстановления повреждений в органах и тканях. Например, при переломах костей именно гиалуроновая кислота стимулирует быстрое срастание фрагментов. Стимуляция процессов репарации происходит не только за счет активации клеточного деления, но и за счет способности гиалуроновой кислоты активировать рост кровеносных сосудов, которые необходимы вновь формирующейся ткани. К сожалению, способность гиалуроновой кислоты стимулировать рост кровеносных сосудов может играть и негативную роль, например, при росте злокачественной опухоли. Ведь чем быстрее образуются новые сосуды, питающие опухоль, тем быстрее она увеличивается в размерах, и тем скорее дает метастазы.

Также гиалуроновая кислота является компонентом врожденного иммунитета , которым обладает каждый человек с момента рождения. В коже и соединительной ткани гиалуроновая кислота выполняет целый ряд очень важных функций благодаря тому, что поддерживает нити коллагена и эластина в нормальном положении и состоянии. Так, данная молекула защищает кожу, предотвращая проникновение патогенных микробов с ее поверхности вглубь при наличии повреждений (ранки, царапины и т.д.). Кроме того, гиалуроновая кислота поддерживает гидробаланс дермы и эпидермиса, уменьшая испарение воды и одновременно способствуя притягиванию и удержанию на поверхности кожи влаги из воздуха. Благодаря подобным свойствам гиалуроновая кислота увлажняет кожу, а также делает ее гладкой и эластичной, предотвращая повреждения, истончение и иссушение, и, тем самым, замедляя старение.

Обобщая вышесказанное, можно резюмировать, что все разновидности гиалуроновой кислоты обладают следующими свойствами:

  • Поддерживает и восстанавливает нормальную степень гидратации (увлажненности) кожного покрова;
  • Улучшает эластичность тканей, в том числе кожи;
  • Нормализует тонус тканей, в том числе кожи;
  • Улучшает микроциркуляцию;
  • Ускоряет процесс обновления клеток во всех тканях, в том числе в коже;
  • Купирует воспаление и устраняет отек кожи.
Однако описанные эффекты в полной мере присущи не всем разновидностям гиалуроновой кислоты. Так, высокомолекулярные виды гиалуроновой кислоты обладают одними эффектами, а низко- и среднемолекулярные – другими.

Низкомолекулярные разновидности гиалуроновой кислоты , имеющие массу менее 30 кДа, обладают следующими свойствами:

  • Проходят сквозь барьеры, образованные мембранами клеток, вследствие чего могут проникать с поверхности кожи в глубокие слои дермы;
  • Стимулируют рост лимфатических и кровеносных сосудов;
  • Улучшают микроциркуляцию и питание кожи.
Среднемолекулярные разновидности гиалуроновой кислоты , имеющие массу от 30 до 100 кДа, обладают следующими свойствами:
  • Ускоряют заживление ран;
  • Стимулируют деление клеток;
  • Ускоряют миграцию клеток в рану.
Высокомолекулярные разновидности гиалуроновой кислоты , имеющие массу молекул от 500 до 730 кДа, обладают следующими свойствами:
  • Подавляют деление и миграцию клеток в область повреждения;
  • Не проникают с поверхности кожи в глубокие слои;
  • Подавляют рост лимфатических и кровеносных сосудов;
  • Купируют воспаление;
  • Предотвращают разрушение хрящей.

Сферы применения гиалуроновой кислоты

Гиалуроновая кислота широко применяется в эстетической сфере и в прикладной медицине в таких областях, как офтальмология , артрология, в онкологии , в заживлении ран и в иммунологии. Рассмотрим способы применения гиалуроновой кислоты в различных сферах.

Гиалуроновая кислота в эстетической сфере

Современную эстетическую медицину и косметологию невозможно представить без гиалуроновой кислоты, поскольку она применяется очень широко. Так, в косметологии гиалуроновая кислота входит в состав различных кремов, сывороток, масок, гелей и других продуктов, предназначенных для увлажнения, омоложения или уменьшения выраженности возрастных изменений кожного покрова.

В эстетической медицине гиалуроновая кислота является наиболее популярным средством, применяющимся для омоложения кожи, а также устранения возрастных изменений и дефектов по типу "минус-ткань", возникших после хирургических вмешательств. Гиалуроновая кислота используется в инъекционных методиках омоложения, таких, как вживление филлеров, биоревитализация и мезотерапия. Широкое применение данного соединения в инъекционных методах эстетической медицины обусловлено рядом факторов: во-первых, введение гиалуроновой кислоты в кожу безопасно, поскольку аллергические реакции на препарат не возникают; во-вторых, имплантат из длинной молекулы "гиалуронки" сохраняется длительное время, то есть, эффект от произведенной процедуры держится от 1 до 1,5 лет. Наконец, инъекции гиалуроновой кислоты просты в производстве и безболезненны.

Таким образом, очевидно, что гиалуроновая кислота является очень важным компонентом современных косметических средств и необходимым веществом для целого ряда методов нехирургического омоложения кожи. Рассмотрим подробнее, каким образом гиалуроновая кислота применяется в косметических продуктах и используется в методах нехирургического омоложения кожи.

Инъекции с гиалуроновой кислотой (уколы гиалуроновой кислоты)

Под общим названием "инъекции гиалуроновой кислоты" обычно подразумевают несколько методов нехирургического омоложения кожи и устранения выраженности ее возрастных изменений, которые объединены общей сущностью их производства – введением препаратов "гиалуронки" в структуры кожного покрова методом уколов (инъекций). То есть, гиалуроновая кислота вводится в кожу методом инъекций обычным шприцем или специальным роллером. После инъекций гиалуроновой кислоты, произведенных любым методом, кожа человека разглаживается, морщины либо полностью исчезают, либо их выраженность становится меньшей, появляется тургор и устраняется дряблость, а также повышается степень увлажненности структур кожного покрова. Ведь старение кожи, появление морщин, дряблость, сухость и тусклость обусловлены именно дефицитом или уменьшением количества гиалуроновой кислоты в глубоких слоях кожи, и поэтому ее ведение является эффективным способом омоложения и устранения сухости.

К методам, объединенным общим названием "инъекции гиалуроновой кислоты", относят следующие процедуры:

  • Биоревитализация;
  • Биорепарация;
  • Контурная пластика филлерами.
Указанные процедуры "инъекций" отличаются друг от друга разновидностями применяемой для их производства гиалуроновой кислоты, техникой вколов, а также показаниями и противопоказаниями к применению.

Так, мезотерапия производится по принципу "редко, мало, в нужное место". То есть, гиалуроновую кислоту вводят в малых количествах только в те области, которые нуждаются в коррекции (например, в область морщин и т.д.). Кроме того, принцип "редко" означает, что инъекции производятся один раз в несколько дней. Мезотерапия имеет накопительный эффект из-за того, что гиалуроновая кислота вводится в малых количествах, и поэтому для получения хорошего результата необходимо произвести несколько инъекций в один и тот же участок. Эффект мезотерапии сохраняется в течение нескольких месяцев.

Биоревитализация производится при помощи тех же техник вколов (папульной, трассирующей, канальной), что и мезотерапия, но используются большие количества высокомолекулярной гиалуроновой кислоты. Поэтому биоревитализация производится за один раз. Данная процедура дает немедленные и отсроченные результаты. Немедленные результаты представляют собой разглаживание морщин, что заметно сразу после проведения процедуры. Однако данный немедленный эффект держится примерно 1 – 2 недели, после чего исчезает. Далее введенная в кожу гиалуроновая кислота разрушается специальными ферментами, и образуются короткие фрагментарные молекулы. Данные молекулы стимулируют выработку собственной гиалуроновой кислоты, коллагена и эластина, что и является основной целью процедуры биоревитализации, поскольку в результате данного процесса происходит реставрация и омоложение кожи. Именно реставрация структур стареющей кожи является отдаленным результатом биоревитализации, что проявляется улучшением тонуса, исчезновением дряблости, уменьшением количества и глубины морщин. Отдаленные результаты биоревитализации сохраняются в течение 1 – 1,5 лет.

Биорепарация представляет собой процедуру, аналогичную биоревитализации. Однако биорепарация отличается от биоревитализации тем, что для ее производства используются комплексные препараты, содержащие помимо гиалуроновой кислоты витамины , минералы и другие биологически активные вещества. В результате введения в структуры кожи гиалуроновой кислоты, витаминов и минералов достигается длительный и выраженный эффект омоложения, а также устраняются небольшие неровности и дефекты кожного покрова (например, шрамы, следы от прыщей и т.д.).

Контурная пластика филлерами представляет собой введение специальных длинных сшитых между собой нитей высокомолекулярной гиалуроновой кислоты в определенные участки кожи, которым требуется коррекция. Данные нити называются филлерами и располагаются на проблемных участках. Благодаря введению филлеров можно скорректировать линию скул, овал лица, устранить мешки под глазами и т.д.

Все методы инъекций гиалуроновой кислоты производятся под местным обезболиванием, поэтому сами процедуры безболезненные. Однако после того, как действие местного обезболивающего препарата закончится, возможны легкие болезненные ощущения в течение 2 – 4 дней, а также сохранение отека и покраснений на коже.

Увеличение губ гиалуроновой кислотой

Данная процедура является частным вариантом инъекций гиалуроновой кислоты, которые производятся в область контура губ. Когда гиалуроновая кислота в виде филлеров вводится в губы, она заполняет ткани и притягивает воду, что и приводит к увеличению их объема, а также делает контур более четким и красивым. В результате губы становятся более полными, пухлыми и гладкими с четким контуром, а также приобретают сочную окраску. Достигнутый результат сохраняется примерно 8 – 18 месяцев.

В ходе процедуры в губы вводится небольшой объем гиалуроновой кислоты путем точечных вколов. В зависимости от количества введенной гиалуроновой кислоты объем губ можно увеличить умеренно или существенно. Чем больше будет введено "гиалуронки", тем сильнее увеличится объем губ.

Сама процедура продолжается полчаса и проводится под местным обезболиванием, а полный результат формируется через двое суток. После увеличения губ гиалуроновой кислотой в течение 2 – 7 дней может сохраняться отек, покраснение и болевые ощущения, которые затем полностью проходят.

Гиалуроновая кислота под глаза

Гиалуроновая кислота может использоваться для устранения морщин и темных кругов под глазами, а также для придания тонкой коже данной области эластичности, упругости и повышения степени ее увлажненности. Гиалуроновая кислота под глаза может применяться как в виде инъекций, так и в составе специальных кремов, сывороток, гелей или муссов, содержащих ее в качестве активного компонента.

Показания и противопоказания для инъекций гиалуроновой кислоты (в том числе с целью увеличения губ)

Инъекции гиалуроновой кислоты различными методами показаны в следующих случаях:
  • Сухая и обезвоженная кожа;
  • Дряблая кожа на лице, животе, бедрах и плечах;
  • Морщинки в области глаз, овала лица и декольте;
  • Круги под глазами;
  • Тусклый и нездоровый цвет лица;
  • Расширенные поры на коже лица;
  • Повышенная выработка кожного сала;
  • Подтяжка овала лица;
  • Улучшение линии скул;
  • Устранение морщин;
  • Увеличение количества влаги в коже;
  • Повышение эластичности и тургора кож;
  • Нормализация рельефа кожи;
  • Увеличение объема и улучшение контура губ.
Инъекции гиалуроновой кислоты противопоказаны в следующих случаях:
  • Непереносимость или аллергические реакции на гиалуроновую кислоту;
  • Период беременности и кормления грудью ;
  • Острый период любых острых и инфекционных заболеваний;
  • Аутоиммунные заболевания;
  • Патология соединительной ткани;
  • Злокачественные опухоли;
  • Гипертоническая болезнь;
  • Склонность к образованию рубцов на коже;
  • Диабетическая ангиопатия ;
  • Нарушения свертывания крови;
  • Наличие воспалений или родинок в области предполагаемых вколов;
  • Заболевания кожи;
  • Прием препаратов, влияющих на свертываемость крови (антикоагулянтов , антиагрегантов и т.д.).

Препараты для инъекций гиалуроновой кислоты

В настоящее время для инъекций гиалуроновой кислоты используются разнообразные препараты, произведенные в разных странах и предназначенные для различных целей. Ниже в таблице мы приводим список основных высококачественных сертифицированных препаратов гиалуроновой кислоты с указанием показаний для их применения и длительностью достигнутого эффекта.
Препарат гиалуроновой кислоты Показания к применению препарата Длительность достигнутого эффекта
Varioderm Коррекция средних и глубоких морщин
Коррекция контура губ
6 – 12 месяцев
Varioderm Fineline Устранение поверхностных морщин
Коррекция "гусиных лапок"
Коррекция красной каймы губ
6 – 12 месяцев
Varioderm Plus Коррекция глубоких морщин
Коррекция овала лица
6 – 12 месяцев
Varioderm Subdermal Коррекция очень глубоких морщин
Увеличение объема тканей
6 – 12 месяцев
Hylaform (Hylan-B age) Коррекция формы губ
12 месяцев
Hyalite (Puragen) Коррекция формы губ
Устранение носогубных складок
12 месяцев
Teosyal Global Action Коррекция средних морщин 12 месяцев
Teosyal Deep Lines Коррекция глубоких морщин и складок кожи 12 месяцев
Teosyal Kiss Коррекция объема и контура губ 12 месяцев
Prevelle 3 – 6 месяцев
Captique Коррекция тонких и средних морщин 3 – 6 месяцев
Repleri Коррекция средних и глубоких морщин 12 – 18 месяцев
Juvederm Ultra 6 – 8 месяцев
Juvederm Ultra Plus Коррекция средних или глубоких морщин и складок 6 – 12 месяцев
Sirgiderm 18 Коррекция тонких морщин 6 месяцев
Sirgiderm 30 Устранение глубокой кожной депрессии
Восполнение дефицита объема тканей
9 месяцев
Sirgiderm 24 XP Устранение умеренной кожной депрессии
Коррекция контура губ
9 месяцев
Sirgiderm 30 XP Устранение глубокой и умеренной кожной депрессии
Восполнение дефицита объема тканей
Коррекция контура и формы губ
9 месяцев
Belotero Basic Устранение шрамов
Коррекция глубоких и средних морщин или борозд
Коррекция контуров лица
Увеличение объема и коррекция контура губ
6 – 9 месяцев
Belotero Soft Коррекция тонких поверхностных морщин 6 – 9 месяцев
Jolidermis 24 + Коррекция глубоких мимических морщин
Коррекция и восстановление контура губ
6 – 9 месяцев
Jolidermis 24 Коррекция средних и глубоких мимических морщин 6 – 9 месяцев
Jolidermis 18 Коррекция мелких морщин 6 – 9 месяцев
Restylane Коррекция умеренных морщин 6 – 12 месяцев
Restylane Lipp Увеличение объема губ
Коррекция красной каймы губ
6 – 12 месяцев
Restylane Perlane Коррекция глубоких складок
Коррекция овала лица
6 – 12 месяцев
Restylane SubQ Устранение возрастного дефицита объема тканей
Устранение асимметрии мягких тканей
12 – 18 месяцев
Restylane Touch Коррекция очень тонких морщин (в том числе в области орбиты глаза и рта) 6 месяцев
Эвгулон В Коррекция мелких и глубоких морщин и постакне 6 месяцев
Гиалуформ Коррекция тонких морщин 6 – 7 месяцев
Гиалуформ 1,8% Коррекция средних морщин и складок 8 – 9 месяцев
Гиалуформ 2,5% Устранение дефицита объема тканей 6 – 8 месяцев
Гиалрипайер-0,1 Коррекция мелких и глубоких морщин 10 – 14 месяцев

Гиалуроновая кислота до и после – фото


На данной фотографии изображен эффект, достигнутый инъекциями гиалуроновой кислоты, произведенными по методу биоревитализации.


На данной фотографии изображен эффект инъекций гиалуроновой кислоты препаратом Restilane.

Губы после гиалуроновой кислоты – фото



На данной фотографии изображен эффект увеличения объема губ при помощи гиалуроновой кислоты.

Крем, сыворотка и маски с гиалуроновой кислотой

Различные крема, маски, сыворотки и другие косметические продукты с гиалуроновой кислотой предназначены для наружного применения с целью увлажнения кожи, а также уменьшения степени выраженности возрастных изменений. Косметические средства с гиалуроновой кислотой подтягивают кожу, уменьшают ее дряблость, купероз и размер расширенных пор, а также выравнивают цвет лица и улучшают рельеф кожного покрова. Однако для того, чтобы получить видимый эффект от косметических средств с гиалуроновой кислотой, их необходимо применять регулярно минимум в течение месяца.

Выбирая косметическое средство, необходимо ориентироваться на количество и качество гиалуроновой кислоты в нем. Так, в сыворотках содержится наиболее высокая концентрация гиалуроновой кислоты, поэтому данные косметические средства рекомендуется выбирать для ухода за кожей, находящейся в плохом состоянии, а также для получения максимально быстрого эффекта. Сыворотки с гиалуроновой кислотой рекомендуется применять на начальном этапе, а затем переходить на использование кремов с гиалуроновой кислотой.

В кремах может содержаться высокомолекулярная или низкомолекулярная гиалуроновая кислота. Высомолекулярная гиалуроновая кислота в составе кремов покрывает кожу невидимой пленкой, из которой впитывается в верхние слои эпидермиса, делая его увлажненным, подтянутым, с ровным и сияющим цветом. Низкомолекулярная гиалуроновая кислота способна всасываться с поверхности в глубокие слои кожи, в которых стимулирует выработку коллагена и эластина, что приводит к более выраженному и стойкому эффекту. Однако крема, содержащие низкомолекулярную гиалуроновую кислоту, стоят гораздо дороже косметических средств с высокомолекулярной формой "гиалуронки". Поэтому для коррекции поверхностных возрастных изменений оптимально использовать крема с высокомолекулярной гиалуроновой кислотой. Соответственно, для коррекции и уменьшения выраженности глубоких возрастных изменений необходимо применять крема с низкомолекулярной гиалуроновой кислотой.

Маски с гиалуроновой кислотой применяются по тем же принципам, что и крема. Крема и сыворотки можно применять ежедневно, а маски – 1 – 2 раза в неделю. Все средства с гиалуроновой кислотой необходимо использовать только при плюсовой температуре, поскольку на морозе ее молекулы кристаллизуются и могут поранить кожу. Поэтому в зимнее время рекомендуется наносить средства с гиалуроновой кислотой только вечером, когда уже не планируется выход на улицу.

Однако необходимо помнить, что косметические средства с гиалуроновой кислотой не рекомендуется применять людям младше 25 лет, поскольку это может спровоцировать обратный эффект. Дело в том, что у молодых женщин кожа сама вырабатывает достаточное количество гиалуроновой кислоты и не нуждается в интенсивном уходе, а потому постоянное поступление данного вещества извне может привести к тому, что кожный покров перестанет ее вырабатывать. В результате наступит преждевременное старение кожи.

В настоящее время крема, сыворотки, маски и другие косметические средства выпускаются многими фирмами, поэтому приобрести их не составляет проблем. Одними из лучших косметических средств с гиалуроновой кислотой являются крема, маски, муссы и сыворотки, произведенные европейскими, азиатскими и американскими фирмами.

Препараты гиалуроновой кислоты для кожи лица: применение (инъекция), эффекты, возможные осложнения, рекомендации дерматокосметолога - видео

Кремы и инъекции с гиалуроновой кислотой: как они действуют, в каких случаях применяются - видео

Кремы для увлажнения сухой кожи: с гиалуроновой кислотой, с плёнкообразующими веществами, с гидроксикислотами - видео

В чем разница между эффектами от крема, сыворотки и уколов гиалуроновой кислоты (ответ косметолога) - видео

Гиалуроновая кислота для суставов

В здоровых суставах обязательно содержится небольшое количество жидкости, которая выполняет роль смазки. В этой жидкости имеется гиалуроновая кислота, которая придает ей необходимые свойства. При различных заболеваниях суставов концентрация гиалуроновой кислоты в суставной жидкости снижается в 2 – 4 раза. Поэтому в настоящее время успешно применяется метод лечения заболеваний суставов, заключающийся во введении высокомолекулярной гиалуроновой кислоты в его полость.

При введении гиалуроновой кислоты в сустав при остеоартрозах купируется болевой синдром и улучшается его функциональная активность, что позволяет человеку нормально двигаться и вести привычный образ жизни. Кроме того, применение гиалуроновой кислоты восстанавливает свойства внутрисуставной жидкости, подавляет воспалительный процесс и стимулирует восстановление нормальной структуры тканей.

В настоящее время при заболеваниях суставов применяют следующие препараты гиалуроновой кислоты:

  • Вискорнеал форто;
  • Вискосил;
  • Синвиск (Гилан G-F 20);
  • Синокром;
  • Суплазин;
  • Остенил.
Следует помнить, что чем больше молекулярная масса гиалуроновой кислоты, вводимой в сустав, тем длительнее терапевтический эффект. Поэтому для получения длительного лечебного действия необходимо выбирать препараты, содержащие гиалуроновую кислоту с наиболее высокой молекулярной массой.

Гиалуроновая кислота в офтальмологии

Препараты гиалуроновой кислоты широко применяются в местном и системном лечении заболевания глаз . Так, гиалуроновая кислота входит в состав глазных капель "искусственная слеза", предназначенных для лечения сухости роговицы. Также "гиалуронка" применяется для проведения хирургических операций на глазах с целью создания оптимальной операционной среды и предохранения тканей от случайных повреждений.

Гиалуроновая кислота в заживлении ран

Гиалуроновая кислота подавляет воспалительный процесс и активизирует процессы восстановления нормальной структуры тканей, благодаря чему успешно применяется в заживлении ран, ожогов и трофических язв . Для заживления ран гиалуроновую кислоту вводят в специальный перевязочный материал, которым покрывают различные повреждения кожного покрова, и периодически меняют повязки.

Биоэксплантаты с гиалуроновой кислотой (тонкая пленка) применяются для покрытия швов на кишечнике после произведенных оперативных вмешательств, что существенно ускоряет заживление раны и восстановление тканей. Кроме того, биоэксплантаты с гиалуроновой кислотой используются в ходе лапароскопических операций для покрытия петель кишечника с целью предупреждения их случайного травмирования.

Гиалуроновая кислота – отзывы

Большинство отзывов о гиалуроновой кислоте (от 85 до 90%) в косметических средствах являются положительными, что обусловлено видимым эстетическим эффектом. В отзывах указывается, что салонные процедуры с гиалуроновой кислотой весьма эффективно увлажняют кожу, делают ее более гладкой и упругой, вследствие чего мелкие морщинки разглаживаются, а новые не образуются. Кроме того, во многих отзывах указывается, что применение кремов с гиалуроновой кислотой приводит к тому же эффекту, что и салонные процедуры, но только медленнее. Если эффект от салонной процедуры заметен сразу, то при использовании кремов или масок он появляется только через месяц.

Сегодня упоминаниями о гиалуроновой кислоте пестрят как глянцевые издания, так и страницы обычных СМИ. Последние несколько лет нам не перестают твердить, что «секрет вечной молодости кожи раскрыт» и предлагают воспользоваться этим «эликсиром». Давайте попробуем разобраться, чего же в этом нездоровом ажиотаже больше – правдивой информации, точного коммерческого расчёта или банальных обывательских заблуждений.

Открытия прошлого, не оправдавшие надежд

Если заглянуть в совсем недавнее прошлое, то можно вспомнить, что аналогичные ситуации уже были в истории медицины:

  • Открытие пенициллина преподносилось, как полная победа над микроорганизмами (чего, к огромному сожалению, не произошло, несмотря на теперешний спектр ).
  • Выпускаемому инсулину пророчили победу над (препарат для диабетиков жизненно важный и крайне необходимый, но до полной победы над диабетом еще очень далеко).
  • Использование первых нейролептиков преподносилось, как возможность излечения от определенных расстройств психики, но и тут все далеко от идеальных ожиданий.

В общем, истинная картина по прошествии некоторого времени всё-таки отличается от прогнозов и первоначальных оценок. Поэтому очень важно относиться ко всему критично и максимально объективно.

Развенчиваем мифы о гиалуроновой кислоте

Никто из медиков не будет спорить, что гиалуроновая кислота важна для организма человека, но то множество информации, которое сегодня можно встретить в СМИ и которое выдаётся за истину, увы, приходит к нам не от профессионалов. Чаще всего новаторские мысли в народ несут различного рода бьюти-эксперты, блоггеры-самоучки и другие люди без профильного – медицинского, фармацевтического или биологического образования. Они высказываются о медицинском препарате на основании собственных оценочных впечатлений, информации из сомнительных источников или информации, вырванной из контекста

Так рождаются заблуждения. Давайте попробуем отделить зерна от плевел и разобраться в этом вопросе более детально.

Истина

Главное заблуждение в том, что препарат называют в единственном числе, а правильно называть во множественном – кислоты, так как это одно из соединений группы кислых мукополисахаридов, куда входят и другие соединения аналогичного состава и свойств, причем масса их может колебаться в широких пределах. Так как подавляющее большинство препаратов, выходящих под названием «гиалуроновая кислота» производится из биологического сырья без специального разделения фракций, то и считать препарат именно одним, чистым, соединением совсем некорректно.

Гиалуроновая кислота – результат открытий бьюти-лабораторий последний двух-трех десятилетий.

Само вещество было открыто еще в 1930 году и изучением её свойств, функций, а также возможностями применения занялись практически сразу после открытия. Сами исследования не прекращались, а начиная с 70-х годов прошлого века их интенсивность стала нарастать.

Данное вещество используется в косметической и косметологической продукции

Помимо этого развитого направления гиалуроновая кислота применяется при различных заболеваниях других органов и систем в качестве лекарственного средства.

В косметологических средствах улучшает проникновение полезных веществ внутрь кожи

Не влияет на уровень клеточной и межклеточной проницаемости для различных веществ

Старение кожи связано с потерей жидкости из-за уменьшения уровня веществ этой группы во всех слоях кожи

Если снижение содержания гиалуронатов и происходит с возрастом, то не столь значительно, а старение, в том числе и кожи, – сложнейший многогранный общебиологический процесс и сводить его проявления к столь банальным причинам – просто глупо

Правда о гиалуроновой кислоте

Все свойства и характеристики и отличительные особенности гиалуроновой кислоты подробно описываются в научной и медицинской литературе. Однако она пересыщена множеством терминов, что делает имеющуюся информацию не всегда понятной для простого обывателя.

Если попытаться все несколько упростить – получается что:


Для каждой из фракций присущ свой набор свойств и характеристик. Так низкомолекулярные разновидности вещества обладают прекрасным противовоспалительным действием, что обеспечило их применение при ожогах, трофических язвах, герпетических высыпаниях, псориазе. Среднемолекулярная гиалуроновая кислота способна подавлять размножение клеток и их миграции. Благодаря этим свойствам её задействуют при лечении некоторых артритов и болезней глаз. Высокомолекулярные фракции удерживают вокруг себя огромное количество молекул воды и стимулируют клеточные процессы в самой коже. Эта разновидность гиалуроновой кислоты нашла своё применение в хирургии, офтальмологии и косметологии

Важно знать! Использовать препарат с неуказанной величиной молекул действующего вещества категорически нельзя, так как можно не только не добиться желаемого результата, но и ухудшить состояние.

Основные показания к применению гиалуроновой кислоты

Всегда следует помнить, что введение в организм препаратов гиалуроновой кислоты инъекционно является в первую очередь медицинской манипуляцией. Для использования различных методик и проведения процедур имеются достаточно строгие медицинские критерии.

Так, основными показаниями к применению гиалуроновой кислоты являются:

  • появление морщин (снижение тургора кожи) вследствие потери влаги;
  • увеличение выраженности имеющихся морщин;
  • выраженные мимические морщины;
  • необходимость нормализации рельефа кожи;
  • необходимость улучшения тургора и контура красной каймы губ.

Препараты гиалуроновой кислоты в эстетической медицине

В современной косметологии восстребованность гиалуроновой кислоты в виде уколов или других форм препарата объясняется:


Современный фармакологический рынок предлагает гиалуроновую кислоту в виде инъекций. При этом она может быть в виде:

  • Мезококтейля , включающего в себя основное вещество, дополненное пантенолом, витаминами, коэнзимами, факторами клеточного роста, пептидами и пр. веществами
  • Филлеров – дермального наполнителя из сшитой ГК, который со временем биодеградирует – рассасывается в организме. Выпускается в виде геля различной степени вязкости. Чем более вязкое вещество, тем с большими проблемами оно призвано справиться.
  • Редермализантов и биоревитализантов . В настоящее время на прилавках аптек можно найти 3 поколения этих препаратов. В основе последних – нуклеиновые кислоты, создающие с ГК комплексы, способные восстанавливать ДНК клеток и ускорять выработку собственной гиалуроновой кислоты, а также эластина и коллагена.
  • Биорепарантов – препаратов, содержащих измененную ГК, к цепи которой прикреплены пептиды, витамины, аминокислоты. Они обладают пролонгированным и усиленным действием.

Обратите внимание: в индустрии красоты могут быть задействованы мази, кремы, гели, лосьоны для наружного применения, но их эффективность гораздо ниже эффективности гиалуроновой кислоты для инъекций.

Основные типы процедур для улучшения состояния кожи лица

Наиболее востребованнымиинъекционными процедурами с гиалуроновой кислотой стали:


Основные противопоказания к применению гиалуроновой кислоты

Если маркетологи пытаются вас уверить в том, что уколы гиалуроновой кислоты, куда бы они не осуществлялись, максимально безопасны, знайте: это ложь! На фоне определенных процедур они действительно безопаснее, однако и у этого препарата есть собственные противопоказания.

В числу основных относятся:

  1. Любые аллергические реакции на действующее вещество или его компоненты.
  2. Любые инфекционные заболевания в остром периоде.
  3. Беременность, роды и последующая лактация.
  4. Патология соединительной ткани.
  5. Общие и системные заболевания, такие как аутоиммунные поражения, онкологическая патология любых органов и систем, сахарный , патология свертывающей системы крови.

Ко всему, в месте инъекций не должны располагаться , родимые пятна, родинки, шрамы и воспалительные процессы. При несоблюдении этих противопоказаний результаты могут быть плачевными.

Эффективность кремов с гиалуроновой кислотой

Отдельную группу препаратов, причем достаточно распространенных, составляют кремы с гиалуроновой кислотой. Их применяют путем нанесения на поверхность кожи, где они и производят непосредственный эффект.

Для поверхностных изменений, защиты кожи используются средства, содержащие высокомолекулярные фракции, которые создают защитный слой и не проникают внутрь кожи.

Для корректировки глубоких, возрастных изменений лучше подходят средства с низкомолекулярными фракциями действующего вещества, так как оно частично может проникать на определенную глубину во внутренние слои, где и осуществляется их биологическое действие.

Всё большую популярность в последнее время приобретают безинъекционные методики, подразумевающие нанесение геля на кожу с последующим воздействием микротоков, лазера, ультразвука.

Хочется закончить советом: для всего есть свое время и свои причины, а основное правило здоровой жизни, отличного настроения и прекрасной внешности – это умеренность. В погоне за красотой старайтесь использовать даже такое средство, как гиалуроновая кислота, без излишеств, и ваша кожа будет выглядеть хорошо даже в глубокой старости.

Более подробную информацию о применении препаратов гиалуроновой кислоты для лица вы получите, посмотрев видео-обзор:

Совинская Елена Николаевна, терапевт.

Индустрия красоты постоянно расширяет перечень косметических процедур и препаратов, которые позволяют сохранить молодость лица и устранить возрастные изменения кожи, которые неизбежно происходят с каждым человеком. Достаточно давно и эффективно в эстетической медицине применяется гиалуроновая кислота для лица, представленная в различных косметических продуктах для салонного и домашнего использования. Входит в состав косметических продуктов (крема, лосьоны, маски и другие), используется для биоревитализации лица и иных манипуляций, которые позволяют замедлить процессы старения и улучшить состояние тканей.

Насколько эффективны эти процедуры и какую роль играет гиалуронат в поддержании молодости и тонуса кожи, рассмотрим в данной статье.

Свойства, строение гиалуроновой кислоты и ее роль в коже

Данное химическое соединение было открыто в 1930 гг. Карлом Мейером и до настоящего времени интенсивно изучается медиками, химиками, фармацевтами и другими учеными на экспериментальных и биологических моделях.

Обладает уникальным физическим свойством — способна удерживать воду, образуя при этом гелеобразную структуру. Участвует в большинстве жизненно важных процессов, происходящих в организме человека и животных. Вещество образуется в организме человека, причем порядка 1/3 от общего количества гиалуроната ежедневно расщепляется и утилизируется, и этот дефицит восполняется новыми молекулами.

Представляет собой полисахарид и состоит из множества одинаковых небольших фрагментов, количество которых может быть разным. Поэтому молекула гиалуроната может иметь разную длину и массу и классифицируется на низко- средне- и высокомолекулярную.

Входит в состав многих тканей и жидкостей организма, в том числе, и в дерму:

  • удерживает коллагеновые и эластиновые волокна в правильном положении и способствует тем самым поддержанию эластичности и тургора кожи, которые являются обязательными условиями для сохранения молодости;
  • за счет связывания воды обеспечивает оптимальное содержание влаги в коже, поддерживая гидробаланс, что тоже является фактором, предупреждающим морщины и старение;
  • уменьшает испарение влаги и одновременно способствует притягиванию и удержанию на поверхности дермы воды из воздуха, увлажняя кожу и делая ее более гладкой и эластичной;
  • молекулы кислоты предотвращают проникновение патогенных микробов вглубь при наличии повреждений, таких как ранки, царапины и др.

Время «жизни» молекулы гиалуроната в эпидермисе и дерме составляет 1-2 дня.

Лучшая гиалуроновая кислота для лица – это собственная, которая вырабатывается в организме. Но с возрастом уменьшается способность синтезировать кислоту в необходимом количестве и с должной молекулярной массой, что также играет свою роль в старении. Поэтому организм нуждается в дополнительном источнике кислоты, одним из которых являются косметические препараты.

Препараты и средства с гиалуроновой кислотой

Получение гиалуроната в промышленных масштабах сегодня занимает свою нишу рынка, поскольку данный «продукт» чрезвычайно востребован и в медицине, и в косметологии. Получают кислоту двумя путями:

  1. из тканей животных;
  2. методом бактериальной ферментации.

Из животного сырья наиболее распространенным вариантом (и оптимальным) являются гребни половозрелых петухов и кур. Также используют стекловидное тело глаза, гиалиновые хрящи, синовиальную жидкость суставов, пупочный канатик животных.

Второй способ предполагает участие бактерий (чаще всего гемолитических стрептококков типов А и В), которые помещают на питательную среду и обеспечивают оптимальные условия для размножения. Бактерии вырабатывают кислоту, которую затем очищают, однако примеси белков и пептидов все равно остаются в очищенном продукте, могут провоцировать аллергические реакции, что существенно ограничивает сферу применения кислоты, полученной таким способом.

Готовая кислота выпускается на фармацевтических заводах в виде гранул и порошков, которые содержат молекулы различной массы. Это базовое сырье для получения растворов, которые стерилизуют в автоклавах и вносят в состав масок, кремов, препаратов и т.д.

Свойства препаратов гиалуроновой кислоты с различной молекулярной массой

Масса молекул гиалуроната напрямую влияет на функцию вещества и степень проникновения в ткани.

Низкомолекулярные разновидности с массой меньше 30 кДа:

  • хорошо проходят сквозь барьеры и мембраны клеток, способны проникать в глубокие слои дермы с поверхности кожи;
  • улучшают микроциркуляцию;
  • улучшают питание кожи.

Среднемолекулярные препараты с массой 30-100 кДа:

  • ускоряют заживление повреждений кожи;
  • стимулируют процесс деления клеток.

Высокомолекулярные препараты с массой молекул 500-730 кДа:

  • не способны проникать в глубокие слои дермы и увлажняют эпидермис;
  • купируют воспаление.

Поэтому для разных целей эстетической коррекции кожи следует применять правильный препарат или средство, тогда как универсального варианта, «чудодейственного коктейля 10 в 1» просто не существует!

Гиалуроновая кислота для лица: применение в эстетических целях

Это уникальное вещество широко используется в эстетической медицине, как для домашнего применения (крема, маски для лица с гиалуроновой кислотой), так и для салонных процедур.

Наиболее широко применяется для:

  • омоложения кожи;
  • устранения возрастных изменений лица;
  • устранения дефектов «минус-ткань», которые бывают после хирургических вмешательств.

Процедуры и препараты хорошо переносятся, редко вызывают аллергию и обеспечивают довольно продолжительный эффект до полутора лет. Наибольший эффект отмечается в возрастной группе 30-40 лет, а вот после 40 лет значительной коррекции возрастных изменений, к сожалению, не ожидать не стоит.

Салонные процедуры

Инъекции для лица - в эту обширную категорию входят несколько методов нехирургического (безоперационного) омоложения кожи и уменьшения проявлений возрастных изменений. Их объединяет способ введения гиалуроната в ткани кожного покрова: посредством уколов (инъекций). Все процедуры проводятся под местной анестезией.

Общими показаниями для применения препаратов гиалуроновой кислоты считаются:

  • обезвоженная, пересушенная, дряблая кожа;
  • сниженный тургор кожи;
  • нездоровый, тусклый цвет лица;
  • возрастные морщины;
  • возрастное изменение контуров лица;
  • темные круги под глазами;
  • неровный рельеф кожи;
  • тонкие, непропорциональные губы.

Лицо после гиалуроновой кислоты приобретает обновленный вид: разглаживается кожа, уменьшается выраженность морщин, улучшается тургор, повышается степень гидратации структур кожного покрова.

Мезотерапия

Мезотерапия лица гиалуроновой кислотой проводится локально, только в области, которые нуждаются в коррекции (морщины, складки). Курс включает несколько уколов, которые вводятся с временным промежутком в малых дозах. Характеризуется накопительным эффектом, которые сохраняется несколько месяцев.

Биоревитализация

Проводится по такому же принципу с разницей, что применяется большая доза высокомолекулярной кислоты и необходим всего один укол. Характеризуется как немедленным, так и отсроченным результатом. Сразу после укола наблюдается заметное разглаживание морщин, которое держится всего 1-2 недели. Далее введенный препарат разрушается специальными ферментами, и из молекулы кислоты с высокой молекулярной массой получаются короткие фрагментарные молекулы. Они и стимулируют выработку собственного гиалуроната, рост волокон эластина и коллагена, что и приводит к постепенному омоложению: улучшению тургора дермы, исчезновению дряблости и уменьшению выраженности и глубины морщин. Данный эффект наблюдается в течение полутора лет.

Биорепарация

Аналогичная биоревитализации процедура, с той лишь разницей, что препараты для ее проведения насыщаются не только гиалуронатом, но и другими веществами с биологической активностью: витаминами, минералами, аминокислотами и др. Это обеспечивает более длительный и выраженный эффект и расширяет возможности процедуры: позволяет устранить дефекты кожи, такие как шрамы, следы от прыщей.

Биоармирование

Контурная пластика лица с применением филлеров – специальных нитей высокомолекулярной гиалуроновой кислоты в локальные участки кожи, нуждающиеся в коррекции (второе название – биоармирование). Наиболее оправданным введение филлеров считается для коррекции линии скул, овала лица, для устранения мешков под глазами.

Точечные инъекции в область губ

Проводятся для увеличения объема губ и получения более четкого их контура. Эффект сохраняется на период от 8 до 18 месяцев, причем полный эффект от уколов достигается уже на второй день после процедуры.

Уколы от темных кругов

Уколы для устранения темных кругов и морщин под глазами и коррекции состояния нежной кожи вокруг глаз. Улучшают эластичность тонкой кожи, повышают увлажненность и позволяют уменьшить выраженность «гусиных лапок» - характерных мелких морщинок с наружной стороны глаз.

Примерные эффекты от описанных выше процедур можно посмотреть на фото, размещенные в галерее салонов красоты. Но следует помнить, что в каждом конкретном случае результат будет индивидуальным.

Побочные эффекты после процедур возможны в виде болезненности в местах инъекций, а также отека и покраснения кожи. Но, если уколы делает некомпетентный специалист, могут быть и более серьезные реакции, такие как воспаление в месте укола, значительная отечность и уплотнение, а при занесении патогенных микроорганизмов – серьезные инфекции кожи.

Противопоказания к проведению инъекционного введения гиалуроната

Инъекционная пластика лица гиалуроновой кислотой противопоказана в следующих случаях:

  • непереносимость основных или вспомогательных компонентов препарата;
  • беременность и период кормления грудью;
  • обострение хронических заболеваний и любые острые патологии;
  • аутоиммунные заболевания;
  • болезни соединительной ткани;
  • онкопатология;
  • гипертоническая болезнь;
  • склонность к формированию рубцов на коже;
  • нарушение свертываемости крови и лечение препаратами, влияющими на свертываемость;
  • ангиопатия диабетическая;
  • воспаления, родинки и заболевания кожи в области введения препарата.

Сыворотка, маски и крем для лица с гиалуроновой кислотой – эффективность и особенности применения

Огромный перечень косметических продуктов, которые содержат гиалуронат, предназначены для местного применения. Показаны при наличии:

  • дряблости и сниженного тургора кожи;
  • купероза;
  • расширенных пор;
  • неравномерного цвета лица;
  • неровного рельефа кожи;
  • морщин.

Чтобы достичь видимого эффекта, средства рекомендуется применять в комплексе (тоник, крем, маска и др.), регулярно и не менее 1 месяца.

В каждом средстве содержится разное количество гиалуроната. Так, сыворотка для лица отличается наибольшей концентрацией кислоты, поэтому рекомендуется при наличии выраженных изменений кожи и при необходимости достижения быстрого эффекта на начальном этапе ухода. Далее переходят на крем, содержащий высокомолекулярную или низкомолекулярную гиалуроновую кислоту:

  1. крема с высомолекулярным гиалуронатом покрывают кожу невидимой пленкой и уже из нее впитываются в эпидермис, увлажняя его и выравнивая цвет лица;
  2. средства с низкомолекулярной гиалуроновой кислотой способны проникать глубоко в кожу, что приводит к более стойкому и выраженному эффекту. Такие крема стоят дорого, поэтому к ним прибегают для уменьшения выраженности значительных возрастных изменений.

Маски выбирают по такому же принципу, как и крема, и используют их 1-2 раза в неделю.

Не рекомендуется использовать косметические препараты с гиалуронатом до 25 лет. В таком возрасте кожа вырабатывает достаточное количество собственной кислоты, и поступление ее извне может вызвать обратный эффект: кожный покров перестанет вырабатывать собственный полисахарид.

Обзор некоторых средств для домашнего использования с гиалуронатом

Либридерм с гиалуроновой кислотой для лица

Универсальный увлажняющий крем без запаха и синтетических добавок, который подходит для всех типов кожи, в том числе, для гиперчувствительной и пересушенной. Содержит повышенное количество низкомолекулярной гиалуроновой кислоты и обладает следующими свойствами: увлажняет эпидермис, восстанавливает гидробаланс дермы, выравнивает рельеф лица, улучшает цвет. Устраняет шелушение, покраснение и другие проявления гиперчувствительной кожи. Помогает устранить ранние признаки старения. Рекомендован для ежедневного ухода за областью вокруг глаз, кожи лица, шеи и зоны декольте.

Крем для лица Либридерм продается в удобном флаконе с дозатором объемом 50 мл и обойдется в 400-500 рублей. Производится в России.

Помимо крема, в линейке Либрадерм имеются другие средства с гиалуронатом, предназначенные для комплексного ухода: вода, сыворотка и другие. Отзывы о продуктах данной линейки в основном положительные, но все средства требуют комплексного и регулярного применения.

Крем Лора

Еще один косметический продукт российского производства, который относится к категории антивозрастных и содержит много активных компонентов, помимо гиалуроната: витамины, вытяжки иглицы и дикого ямса, растительные фосфолипиды, соевое масло и другие.

Туба 30 гр. обойдется в порядка 350-450 руб.

Крем Долива увлажняющий

Известный косметический концерн, позиционирующий свою косметическую продукцию как натуральные средства, не обошел вниманием и гиалуронат, помимо которого, в универсальном креме для всех возрастов содержится оливковое и масло ши, пантенол, витамин Е, микроэлементы, линалол. Отличается хорошим увлажняющим эффектом.

Баночка 50 мл стоит 700-800 руб.

Французский антивозрастной крем, содержащий 2 типа гиалуроновой кислоты (высоко- и низкомолекулярную), масло ши и баобаба, экстракт авокадо. Восполняет содержание влаги в дерме, обеспечивает упругость и мягкость и значительно улучшает цвет лица. Рекомендован для ухода за сухой кожей после 30 лет.

Флакон 40 мл стоит 1300-1400 руб.

Представляет собой нежный, быстро впитываемый мусс, особенно рекомендованный для нежной и чувствительной кожи. Содержит низкомолекулярную гиалуроновую кислоту, водоросли, глюкозамины. Очень хорошо увлажняет, стимулирует обновление кожи и синтез собственного гиалурона.

Цена флакона 50 мл – 800-900 руб.

Крем от польского производителя с выраженными увлажняющими свойствами и несколько меньшими омолаживающими. Покрывает поверхность эпидермиса дышащей пленкой, которая препятствует потере влаги.

Цена – 380-400 руб.

Крем для лица, приготовленный в домашних условиях

Альтернативным вариантом дорогостоящей продукции, которая продается в аптеке и магазинах, является вариант домашнего крема. Для его получения сначала нужно приготовить гель с гиалуроновой кислотой: соединить 0,3 гр. порошка гиалуроната с дистиллированной водой до получения кремообразной консистенции, перемешать и на 6-8 часов поместить основу в холодильник. Далее взять любой базовый крем, например, детский, добавить в него 8-10 гр. геля и хорошенько перемешать, оставить в сухом, прохладном месте на 6 часов и далее применять как обычный крем утром и вечером, только хранить его в холодильнике.

Внутреннее применение препаратов гиалуровой кислоты для кожи

В 2014 году японскими учеными в ходе рандомизированного, слепого, двойного, плацебо-контролируемого исследования доказано, что внутренний прием препаратов с гиалуронатом, как пищевой добавки, повышает уровень увлажненности кожи.

Внутреннее использование к гиалуроната, как добавки к пище, является относительно новым методом устранения сухости кожи, и наиболее широко применяется именно в Японии. Причем в последнее время данный метод позиционируется как один их альтернативных способ лечения пациентов с хронической сухостью кожи.

Первое косметическое средство с кислотой для наружного применения появилось в 1979 г., тогда как в пищу гиалуронат стали добавлять еще в 1942 г. Именно тогда Андре Балаш подал заявку на патентирование коммерческого использования гиалуроаната как заменителя яичного белка для хлебобулочного производства. В Китае и странах Западной Европы петушиный гребень, основное растительное сырье для получения гиалуроната, являлся королевским блюдом. Его употребляла Екатерина Медичи и супруга Генриха II для сохранения молодости. Сегодня пищевые добавки с гиалуроновой кислотой больше позиционируются как средства для улучшения функции коленных суставов при артрозе и в качестве профилактики данного заболевания.

В Корее и Японии продукты с гиалуронатом с одинаковой частотой применяются для поддержания здоровья суставов и кожи. Доказано, что ежедневное потребление в пищу 120-240 мг кислоты в день приводит к значительному улучшению состояния кожи лица и тела и восстановлению водного баланса.

Частично деполимеризованный гиалуронат, поступивший перорально, всасывается в желудочно-кишечном тракте. Кислота же в неизменном виде всасывается в лимфатическую систему. Оба вида гиалуроната затем попадают в кожу. Олигосахариды гиалуроновой кислоты увеличивают выработку собственного гиалурона в фибробластах и стимулируют пролиферацию клеток, что напрямую влияет на увлажненность кожи.

Безопасность перорального приема ГК различного происхождения и с разной молекулярной массой доказана в экспериментах на животных, однако, как и все инородное, поступающее в организм, требует более глубокого и тщательного изучения, а также наблюдения за состоянием здоровья пациентов в отдаленной динамике и ни в коем случае не является панацеей.

Исходя из написанного, можно сделать вывод, что средства и процедуры с гиалуроновой кислотой положительно влияют на увлажненность кожи и позволяют поддерживать оптимальный гидробаланс, особенно у женщин 30-40 лет. Однако каких-либо кардинальных улучшений состояния кожного покрова и значительного сокращения морщин, особенно женщинам старше 40 лет, ожидать не стоит.

Гиалуронан (также называется гиалуроновой кислотой, гиалуронатом или ГК) представляет собой анионный, несульфатированный гликозаминогликан, широко распространенный по всем соединительной, эпителиальной и нервной тканям. Он является уникальным среди гликозаминогликанов в том, что он не сульфатирован, образуется в плазматической мембране вместо аппарата Гольджи, и может быть очень большим, с молекулярной массой, которая зачастую достигает миллионов. Являясь одним из главных компонентов внеклеточного матрикса, гиалуроновая кислота значительно способствует пролиферации и миграции клеток, а также может быть вовлечена в процессе роста некоторых злокачественных опухолей.

Структура гиалуроновой кислоты

Свойства гиалуроновой кислоты впервые были определены в 1930-х годах в лаборатории Карла Мейера.

Гиалуроновая кислота представляет полимер дисахаридов, состоящих из D-N-ацетилглюкозамина и D-глюкуроновой кислоты, соединенных поочередно β-1,4 и β-1, 3- гликозидными связями. Гиалуроновая кислота может содержать по 25000 подобных дисахаридных звеньев. Полимеры гиалуроновой кислоты могут варьироваться в размере от 5000 до 20000000 Да в естественных условиях. Средний молекулярный вес в синовиальной жидкости человека составляет 3-4 миллиона Да; гиалуроновая кислота, выделенная из человеческой пуповины имеет 3140000 Да.

Гиалуроновая кислота энергетически стабильна, отчасти из-за стереохимии составляющих ее дисахаридов. Громоздкие группы на каждой молекуле сахара находятся в пространственно приемлемых положениях, в то время как меньшие молекулы водорода выбирают менее благоприятные аксиальные позиции.

Биологический синтез

Гиалуроновая кислота синтезируется классом интегральных мембранных белков, называемых гиалуронан-синтазами, из которых в организме позвоночных содержатся 3 типа - HAS1, HAS2 и HAS3. Данные ферменты удлиняют гиалуроновую кислоту, последовательно добавляя N-ацетилглюкозамин и глюкуроновую кислоту к исходному полисахариду, при этом передавая полимер с помощью ABC-транспортера через клеточные мембраны в межклеточное пространство.

Было показано, что синтез гиалуроновой кислоты (HAS) ингибируется 4-метилумбеллифероном («химекромон», «хепарвит»), производным 7-гидрокси-4-метилкумарина. Это селективное ингибирование (без ингибирования других гликозаминогликанов) может оказаться полезным в предотвращении метастазирования клеток злокачественных опухолей.

Bacillus Subtilis недавно была генетически модифицирована (ГМО), чтобы культивировать формулу с выделением гиалуроновой кислоты, в запатентованном процессе производства продукции, предназначенной для людей.

Клеточные рецепторы для гиалуроновой кислоты

До сих пор клеточные рецепторы, которые были определены для гиалуроновой кислоты, подразделялись на три основные группы: CD44, рецептор для ГК-опосредованной подвижности (RHAMM) и внутриклеточные молекулы адгезии-1 (ICAM-1). CD44 и ICAM-1 уже были известны как молекулы адгезии клеток с другими признанными лигандами, прежде чем было обнаружено их ГК-связывание.

CD44 широко распространены по всему организму, и формальная демонстрация связывания HA-CD44 было предложено Aруффо и соавторами в 1990 году. На сегодняшний день, он признается в качестве основного рецептора на поверхности клетки для гиалуроновой кислоты. CD44 опосредует взаимодействие клеток с гиалуроновой кислотой и связывание обоих оказывает важное влияние в различных физиологических событиях, таких как агрегация клеток, миграция, пролиферация и активация; адгезия «клетка-клетка» и «клетка-субстрат»; эндоцитоз гиалуроновой кислоты, которая приводит к ее катаболизму в макрофагах; а также сборка околоклеточных матриксов из протеогликанов и гиалуроновой кислоты. Две значительные роли CD44 в коже были предложены Кая и соавторами. Первая заключается в регуляции пролиферации кератиноцитов в ответ на внеклеточные стимулы, а вторая - в поддержании местного гомеостаза гиалуроновой кислоты.

ICAM-1 известен в основном как метаболический рецептор клеточной поверхности для гиалуроновой кислоты, и этот белок может быть ответственным, в основном, за выделение кислоты из лимфы и плазмы крови, что составляет большую часть метаболизма всего организма. Связывание лиганда этого рецептора, таким образом, вызывает высоко скоординированный каскад событий, который включает в себя образование эндоцитотического пузырька, его слияние с первичными лизосомами, ферментативное расщепление до моносахаридов, активный трансмембранный транспорт этих сахаров в клеточный сок, фосфорилирование GlcNAc и ферментативное деацетилирование. Как и его название, ICAM-1 также может служить молекулой клеточной адгезии, и связывание гиалуроновой кислоты с ICAM-1 может способствовать контролю ICAM-1-опосредованной активации воспаления.

Расщепление гиалуроновой кислоты

Гиалуроновая кислота расщепляется семейством ферментов, называемых «гиалуронидазы». У людей есть, как минимум, семь видов гиалуронидазоподобных ферментов, некоторые из которых - опухолевые супрессоры. Продукты расщепления гиалуроновой кислоты, олигосахариды и гиалуронат с крайне низкой молекулярной массой, проявляют проангиогенные свойства. Также недавние исследования доказали, что фрагменты гиалуроновой кислоты, а не нативная высокая молекулярная масса, способны вызывать воспалительные реакции в дендритных клетках и макрофагах при повреждениях ткани и отторжении трансплантата кожи.

Роль гиалуроновой кислоты в процессе регенерации раны

Кожа служит механическим барьером к внешней среде и действует для предупреждения проникновения инфекционных агентов. После повреждения, нижележащие ткани подвержены инфицированию; таким образом, быстрое и эффективное заживление оказывает решающее значение для восстановления барьерной функции. Заживление ран кожи является очень сложным процессом, и включает в себя множество взаимодействующих процессов, инициированных гемостазом и высвобождением тромбоцитарных факторов. Следующие стадии - это воспаление, образование грануляционной ткани, реэпителизация и ремоделирование. Гиалуроновая кислота, вероятно, играет многогранную роль в опосредовании этих клеточных и матричных событий. Предполагаемые роли гиалуроновой кислоты в этой последовательности событий заживления ран кожи более подробно освещены ниже.

Воспаление

Многие биологические факторы, такие как факторы роста, цитокины, эйкозаноиды и др., образуются в процессе воспаления. Эти факторы являются необходимыми для последующих стадий заживления ран вследствие их ролей в содействии миграции воспалительных клеток, фибробластов и эндотелиальных клеток в месте раны.

Ткань раны в начале воспалительной фазы заживления раны изобилует гиалуроновой кислотой, что вероятно, является отражением усиленного синтеза. Гиалуроновая кислота действует как промоутер раннего воспаления, что имеет решающее значение в целом для процесса заживления раны кожи. В мышиной модели воздушного кармана, в процессе каррагинан/IL-1-индуцированного воспаления, отмечалось, что гиалуроновая кислота усиливает клеточную инфильтрацию. Кобаяши и соавторы показали дозозависимое увеличение про-воспалительных цитокинов TNF -α и производство IL-8 фибробластами человеческой матки в концентрации гиалуроновой кислоты 10 мкг/мл до 1 мг/мл через CD44-опосредованный механизм. Эндотелиальные клетки, в ответ на воспалительные цитокины, такие как TNF-α, и бактериальный липополисахарид, также синтезируют гиалуроновую кислоту, что, как было показано, усиливает первичную адгезию цитокин-активированных лимфоцитов, экспрессирующих ГК-связывающие варианты CD44 в условиях ламинарного и статического потока. Интересно отметить, что гиалуроновая кислота имеет противоречивые двойные функции в воспалительном процессе. Она не только может способствовать воспалению, как утверждалось выше, но также может смягчить воспалительную реакцию, которая может способствовать стабилизации грануляционной ткани матрикса, как описано в следующей части.

Грануляция и организации матрикса грануляционной ткани

Грануляционная ткань является хорошо кровоснабжаемой, волокнистой соединительной тканью, которая замещает фибриновые сгустки в заживающих ранах. Она обычно растет от основания раны и может заполнить раны практически любого размера. Гиалуроновая кислота содержится в изобилии в грануляционной ткани матрикса. Множество различных функций клеток, которые существенно необходимы для восстановления тканей, можно приписать этой сети, богатой гиалуроновой кислотой. Эти функции включают усиление миграции клеток в предварительный матрикс раны, клеточной пролиферации и организации матрикса грануляционной ткани. Безусловно, инициация воспаления является чрезвычайно важной для образования грануляционной ткани, поэтому про-воспалительная роль гиалуроновой кислоты, как обсуждалось выше, также способствует этой стадии заживления раны.

Гиалуроновая кислота и миграция клеток

Миграция клеток имеет важное значение для образования грануляционной ткани. В ранней стадии грануляционной ткани преобладает внеклеточный матрикс, богатый гиалуроновой кислотой, которая считается благоприятной средой для миграции клеток в этот временный матрикс раны. Содействие гиалуроновой кислотой миграции клеток можно отнести к ее физико-химическим свойствам, как указано выше, а также ее прямому взаимодействию с клетками. По прежнему сценарию, гиалуроновая кислота представляет собой открытый гидратированный матрикс, который усиливает миграцию клеток, тогда как в последнем сценарии, управляемая миграция и контроль локомоторных механизмов клеток опосредуются через специфическое взаимодействие клеток между гиалуроновой кислотой и поверхностными ГК-рецепторами клеток.

Как уже говорилось ранее, тремя основными поверхностными рецепторами клеток для гиалуроновой кислоты являются CD44, RHAMM, и ICAM-1. RHAMM больше связан с миграцией клеток. Он образует связи с несколькими протеинкиназами, связанных с локомоцией клеток, например, протеинкиназа (ERK), регулируемая внеклеточным сигналом, p125fak, и pp60c-src. Во время внутриутробного развития, пути миграции, через которые мигрируют клетки нервного гребня, богаты гиалуроновой кислотой. Гиалуроновая кислота тесно связана с процессом миграции клеток в матриксе грануляционной ткани, и исследования показывают, что движение клетки может быть ингибировано, по крайней мере, частично, расщеплением гиалуроновой кислоты или блокированием занятости ГК-рецепторов.

Обеспечивая клетку динамической силой, синтез гиалуроновой клетки, как было показано, связывается с миграцией клеток. В основном, кислота синтезируется на плазматических мембранах и выделяется прямо во внеклеточную среду. Это может содействовать гидратированному микроокружению в местах синтеза, и имеет важное значение для миграции клеток, так как способствует отделению клеток.

Роль гиалуроновой кислоты в ведении воспалительной реакции

Хотя воспаление является неотъемлемой частью образования грануляционной ткани, для нормального восстановления тканей, чтобы продолжить, воспаление должно управляться. В первоначально образовавшейся грануляционной ткани процесс воспаления является очень интенсивным с высокой скоростью метаболизма ткани, опосредованным ферментами, расщепляющих матрикс и реактивными метаболитами кислорода, которые являются продуктами воспалительных клеток.

Стабилизация матрикса грануляционной ткани может быть достигнута путем модерирования воспаления. Гиалуроновая кислота функционирует в качестве важного модератора в этом процессе, что противоречит ее роли в воспалительной стимуляции, как описано выше. Гиалуроновая кислота может защитить от вредного воздействия свободных радикалов на клетки. Это благодаря свойству очистки от свободных радикалов, физико-химическому свойству, разделяемому полиионными крупными полимерами. В крысиной модели свойства очистки от свободных радикалов, исследованной Фоши и его коллегами, было показано, что гиалуроновая кислота уменьшает повреждение грануляционной ткани.

В дополнение к роли очистки от свободных радикалов, гиалуроновая кислота может также функционировать в отрицательной обратной связи воспалительной активации через свои специфические биологические взаимодействия с биологическими компонентами воспалениия. TNF-α, важный цитокин, образующийся при воспалении, стимулирует экспрессию TSG-6 (TNF-стимулированный ген 6) в фибробластах и воспалительных клетках. TSG-6, ГК-связывающий белок, также образует стабильный комплекс с сывороточным ингибитором протеиназы IαI (Inter-α-ингибитор) с синергетическим эффектом на плазмин-ингибирующей активности последнего. Плазмин участвует в активации протеолитического каскада матричных металлопротеиназ и других протеиназ, ведущих к воспалительному повреждению тканей.

Таким образом, действия комплекса TSG-6 / IαI, которые могут быть дополнительно организованы путем связывания с гиалуроновой кислотой во внеклеточном матриксе, могут служить мощной отрицательной обратной связью, чтобы смягчить воспаление и стабилизировать грануляционную ткань по мере прогрессирования заживления. В мышиной модели воздушного кармана каррагинан/IL-1 (интерлейкин-1β)-индуцированного воспаления, где гиалуроновая кислота, как было показано, имеет провоспалительные свойства, уменьшение воспаления может быть достигнуто путем введения TSG-6, и результат сравним с системным лечением дексаметазоном.

Реэпителизация

Гиалуроновая кислота играет важную роль в нормальном эпидермисе. Гиалуроновая кислота также имеет важные функции в процессе реэпителизации в связи с ее несколькими свойствами. Она служит в качестве неотъемлемой части внеклеточного матрикса базальных кератиноцитов, которые являются основными составляющими эпидермиса, ее функция очистки от свободных радикалов и ее роли в пролиферации и миграции кератиноцитов.

В нормальной коже, гиалуроновая кислота находится в относительно высокой концентрации в базальном слое эпидермиса, где находятся пролиферирующие кератиноциты. CD44 находится совместно с гиалуроновой кислотой в базальном слое эпидермиса, где дополнительно, как было показано, экспрессируется преимущественно на плазматических мембранах, стоящих перед карманами матрикса, богатого кислотой. Поддержание внеклеточного пространства и обеспечение открытой, а также увлажненной, структуры для прохождения питательных веществ, являются основными функциями гиалуроновой кислоты в эпидермисе.

Тамми Р. и его коллеги обнаружили увеличение содержания гиалуроновой кислоты в присутствии ретиноевой кислоты(витамина А). Предполагаемые эффекты ретиноевой кислоты против повреждения светом и старения кожи могут коррелироваться, по крайней мере частично, с увеличением содержания гиалуроновой кислоты в коже, что приводит к увеличению гидратации тканей. Было высказано предположение, что свойство очистки от свободных радикалов гиалуроновой кислоты вносит свой вклад в защиту от солнечного излучения, поддерживая роли CD44, выступающим в качестве ГК-рецепторов в эпидермисе.

Эпидермальная гиалуроновая кислота также функционирует в роли манипулятора в процессе пролиферации кератиноцитов, что крайне важно в нормальном функционировании эпидермиса, а также во время реэпителизации в восстановлении тканей. В процессе заживления раны, гиалуроновая кислота экспрессируется в крае раны, в матриксе соединительной ткани, и выстраиваясь согласно экспрессии CD44 в миграции кератиноцитов.

Kая и соавторы нашли подавление экспрессии CD44 эпидермис-специфичным антисенсорным трансгеном, приведшему у животных накоплению дефектной гиалуроновой кислоты в поверхностной дерме, сопровождаемому различными морфологическими изменениями базальных кератиноцитов и дефектной пролиферации кератиноцитов в ответ на митоген и факторы роста. Также наблюдались снижение эластичности кожи, нарушенная местная воспалительная реакция и нарушенная регенерация тканей. Их наблюдения решительно поддерживают важные роли гиалуроновой кислоты и CD44 в физиологии кожи и регенерации тканей.

Заживление ран и рубцевание у плода

Отсутствие фиброзного рубцевания является основной особенностью заживления ран плода. Даже в течение длительного времени, содержание гиалуроновой кислоты в ранах плода по-прежнему выше, чем в ранах взрослых, что дает повод предполагать, что кислота может, по крайней мере, частично, уменьшить отложение коллагена, что следовательно, приводит к сниженному рубцеванию. Это предложение согласуется с исследованием Веста и его коллег, которые показали, что в заживлении ран взрослых и плода на поздних сроках беременности, удаление гиалуроновой кислоты приводит к фиброзному рубцеванию.

Видео о гиалуроновой кислоте

Роль в метастазировании рака

Синтазы гиалуроновой кислоты (СГК) играют роль на всех стадиях метастазирования рака. Производя анти-адгезивную гиалуроновую кислоту, СГК может позволять опухолевым клеткам освобождаться от основной массы опухоли, и если кислота связывается с рецепторами, такими как CD44, активация Rho GTPаз может способствовать эпителиально-мезенхимальному переходу раковых клеток. Во время процесса интравазации или экстравазации взаимодействие гиалуроновой кислоты, выделенной СГК с рецепторами, такими как CD44 или RHAMM, усиливают изменения в клетках, которые позволяют раковым клеткам проникать в сосудистую или лимфатическую системы. Во время путешествия в этих системах, гиалуроновая кислота, выделенная СГК, защищает раковые клетки от физического повреждения. Наконец, в формировании метастатического поражения, СГК производит гиалуроновую кислоту, чтобы позволить раковым клеткам взаимодействовать с родными клетками на вторичном участке и производить опухоль самой по себе.

Гиалуронидазы (ГКазы или ГИАЛ) также играют множество ролей в метастазировании рака. Помогая расщеплять внеклеточный матрикс, окружающий опухоль, гиалуронидазы помогают раковым клеткам отделиться от первичной массы опухоли и играют важную роль в интравазации, способствуя расщеплению базальной мембраны лимфатических или кровеносных сосудов. Гиалуронидазы вновь играют эти роли в обосновании метастатического образования, помогая с экстравазацией и удалением внеклеточного матрикса с вторичного участка. Наконец, гиалуронидазы играют ключевую роль в процессе ангиогенеза. Фрагменты гиалуроновой кислоты усиливают ангиогенез и гиалуронидазы производят эти фрагменты. Интересно, что гипоксия также усиливает продукцию гиалуроновой кислоты и активность гиалуронидаз.

Рецепторы гиалуроновой кислоты, CD44 и RHAMM, наиболее хорошо изучены с точки зрения их ролей в метастазировании рака. Усиленная клиническая экспрессия CD44 положительно коррелировалась с метастазированием в ряде типов опухолей. С точки зрения механики, CD44 влияет на адгезию раковых клеток друг с другом и к эндотелиальным клеткам, перестраивает цитоскелет посредством Rho GTPаз, и усиливает активность ферментов, расщепляющих внеклеточный матрикс. Увеличение экспрессии RHAMM также было клинически скоррелировано с метастазированием рака. С точки зрения механики, RHAMM способствует подвижности раковых клеток через ряд путей, включая киназу очаговой адгезии (FAK), МАР-киназу (МАРК), PP60 (c-src), и ниже по течению мишени Rho-киназы (ROK). RHAMM также может сотрудничать с CD44 с целью содействовать ангиогенезу в сторону метастатического образования.

Применение гиалуроновой кислоты в медицине

Гиалуроновая кислота содержится во многих тканях организма, таких как кожа, хрящи и стекловидное тело. Таким образом, она хорошо подходит для биомедицинских приложений, нацеленных на эти ткани. Первый биомедицинский продукт гиалуронана, «Healon», был разработан в 1970 - 1980-х годах компанией «Pharmacia» и был предназначен для использования в хирургии глаза (например, пересадка роговицы, операции по удалению катаракты, операции при глаукоме, и операции по восстановлению отслоившейся сетчатки). Другие биомедицинские компании также производят бренды гиалуроновой кислотой для глазной хирургии.

Нативная гиалуроновая кислота имеет сравнительно короткий период полураспада, так что были привлечены различные методы производства для увеличения длины цепи и стабилизации молекулы для применения в медицинских целях. Введение перекрестных связей на основе белка, введение молекул, очищающих от свободных радикалов, таких как сорбитол, и минимальная стабилизация цепей гиалуроновой кислоты с помощью химических реактивов, например, стабилизация NASHA - это все методы, которые были использованы.

В конце 1970-х годов имплантация интраокулярного хрусталика часто сопровождалась тяжелым отеком роговицы, вследствие повреждения клеток эндотелия во время операции. Было очевидно, что требовалась вязкая, прозрачная, физиологическая смазка для предотвращения такого соскабливания эндотелиальных клеток. Эндре Балаш запатентовал метод выделения гиалуроновой кислоты, физиологический смазки (которую он назвал «Healon») из гребней петухов в начале 1970-х годов.

Во-первых, Балаш считал «Healon» невоспалительным заменителем стекловидного тела. Клаус Дольман использовал «Healon» Балаша в одном случае, в котором произошло уплощение передней камеры после сложной пересадки роговицы. Хотя можно представить, что вязкая гиалуроновая кислота может привести к увеличению внутриглазного давления, Дольман сообщил об отсутствии такого увеличения. С того времени Балаш получил лицензию на процесс синтеза компанией Pharmacia, шведской фармкомпанией.

В данном историческом обзоре, посвященном гиалуроновой кислоте , мы постарались привлечь внимание посетителя вебсайта к наиболее важным открытиям и исследованиям, на которых строились все последующие работы в области изучения этого уникального полисахарида. Выбор данных и источников для обзора является полностью субъективным.

ВВЕДЕНИЕ

В настоящий момент никаких принципиально новых данных о гиалуроновой кислоте не существует, поэтому мы решил сделать темой этой небольшой статьи «Гиалуроновая кислота - история». При существующем в настоящее время темпе движения научной мысли далеко не каждый человек имеет достаточно времени для того, чтобы оглянуться назад и просмотреть данные литературы, в которой описаны ключевые открытия в области гиалуроновой кислоты , поэтому мы постарались кратко изложить существующие результаты. Выбор источников и данных основан только на наших знаниях и мнении, поэтому может расходиться с взглядами других людей.

КАК ВСЕ НАЧИНАЛОСЬ

Венгерский ученый Bandi Balazs эмигрировал из Венгрии в 1947 году. Приехав в Швецию, он начала работать в Стокгольме над проблемой биологической роли внеклеточных полисахаридов, причем особенно много внимания он уделял именно гиалуронату .

В те годы культуральная работа с клетками выглядела совсем по-другому. До появления антибиотиков все манипуляции выполнялись в строго стерильных условиях близких к условиям в операционной. Клетки растили на подвешенных сгустках фибрина. Фибробласты выделялись из измельченных куриных сердец, кусочки которых клались на фибриновые сгустки, а скорость роста культуры определялась по изменению площади колонии, которая указывала на скорость и расстояние миграции клеток.

Одним из первых открытий было выделение из ткани пуповины гиалуроната для того, чтобы затем вводить его в культуру фибробластов.

Гиалуронат выделялся из пуповинной крови и преципитировался в спирту. Затем его очищали от белков путем встряхивания экстракта в смеси хлороформа и изоамилового спирта (по методу Sewag). Была предпринята попытка разработать метод стерилизации вязкого раствора гиалуроната. Его нельзя было подвергать фильтрации, поэтому в конечном итоге ученые пришли к использованию автоклавирования.

В самом начале работы было сделано три очень важных наблюдения, которые заложили основу для дальнейших исследований.

Во-первых, удалось выделить гиалуронат из ткани пуповины, причем при разных ионных условиях был получен материал с различной степенью вязкости. Самая высокая вязкость была у раствора, приготовленного на дистиллированной воде. Ученые предположили, что вязкость раствора гиалуроната может колебаться в зависимости от значения рН и ионной силы растворителя. Сейчас это уже знает каждый, однако на тот момент этот феномен был описан Raymond Fuoss только для растворов синтетических полиэлектролитов. В журнале «Journal of Polymer Chemistry» была опубликована статья "The viscosity function of hyaluronic acid as a polyelectrolyte" (Показатель взякости гиалуроновой кислоты как полиэлектролита). С этого момент ученые вплотную занялись исследованиями физических и химических свойств гиалуроната.

Во-вторых, при попытке простерилизовать гиалуронат с помощью УФ-излучения он полностью утратил вязкость в растворе. В дальнейшем было показано, что при воздействии потока электронов гиалуронат также полностью подвергается деградации. Сейчас уже можно сказать, что то наблюдение было одним из первых описаний свободнорадикального расщепления гиалуроната.

В-третьих, исследовались и биологические эффекты гиалуроната и ряда сульфатированных полисахаридов - гепарина, гепарансульфата (который в те годы назывался «гепарин-односерной кислотой») и синтетически сульфатированного гиалуроната. Ученые сравнили их влияние на рост культуры клеток, антикоагулянтную активность и антигиалуронидазную активность. Главной задачей было выяснить действительно ли гепарин представляет собой сульфатированный гиалуронат, как это утверждалось в работах Asboe-Hansen, однако был сделан вывод, что это утверждение было ошибочно.

Гиалуронат, в отличие от сульфатированных полисахаридов, ускорял рост клеток и это, пожалуй, было одно из первых описаний взаимодействия гиалуроната с живыми клетками - сегодня мы знаем, что это взаимодействие опосредовано клеточным рецептором. Интересно, что это было также одно из первых исследований, посвященных изучению биологической активности гепарансульфата.

Все вышесказанные исследования были выполнены в короткий промежуток времени, начиная с сентября 1949 по декабрь 1950, то есть заняли лишь немногим больше 1 года.

ОТКРЫТИЕ ГИАЛУРОНАТА И ГИАЛУРОНИДАЗЫ

Karl Meyer открыл гиалуронат в 1934 году во время работы в глазной клинике в Университете штата Колумбия. Он выделил это соединение из стекловидного тела глаза коровы в кислых условиях и назвал его гиалуроновой кислотой от греческого hyalos - стекловидный и уроновой кислоты, которая входила в состав этого полимера. Сразу следует сказать, что до этого были выделены и другие полисахариды (хондроитинсульфат и гепарин). Более того, еще в 1918 году Levene and Lopez-Suarez выделили из стекловидного тела и пуповинной крови полисахарид, состоявший из глюкозамина, глюкуроновой кислоты и небольшого количества сульфат-ионов. Тогда его назвали мукоитин-серной кислотой, однако в настоящее время он боле известен как гиаулуронат, который в их работе был выделен с небольшой примесью сульфата.

В течение следующих десяти лет Karl Meyer и еще целый ряд авторов выделили гиалуронат из различных тканей. Так, например, он был обнаружен в суставной жидкости, пуповине и ткани петушиного гребня. Самым интересным было то, что в 1937 году Kendall удалось выделить гиалуронат из капсул стрептококков. В дальнейшем практически из всех тканей организма позвоночных был выделен гиалуронат.

Еще до открытия гиалуроната Duran-Reynals обнаружил в семенниках некий биологически активный фактор. В дальнейшем его стали называть «распространяющийся фактор». Похожим действием обладали яд пчел и медицинских пиявок. При его введении подкожно в смеси с тушью отмечалось очень быстрое распространение черного окрашивания. Этим фактором оказался фермент, разрушающий гиалуронаты , который в дальнейшем назвали гиалуронидазой . Даже в крови млекопитающих присутствует определенное количество гиалуронидаз, но их активация происходит только при кислотных значениях рН.

ВЫДЕЛЕНИЕ ГИАЛУРОНАТА

Самый первый метод выделения гиалуроната был стандартным протоколом для выделения полисахаридов, то есть по методу Sewag или с помощью протеаз из экстракта удалялся весь белок. Затем полимер преципитировался на фракции добавлением этилового спирта.

Большим шагом вперед стало разделение разнозаряженных полисахаридов, которое разработал John Scott при исследовании методов преципитации с катионным детергентом (ЦПХ, цетилпиридинхлоридом), в котором изменялась концентрация солей. Гиалуронат с высокой эффективностью отделялся от сульфатированных полисахаридов. Этим методом также можно было пользоваться и для фракционирования по молекулярной массе. По своей сути, схожие результаты могут быть получены при использовании метода ионно-обменной хроматографии.

СТРУКТУРА И КОНФОРМАЦИЯ ГИАЛУРОНАТА

Химическая структура полисахаридной молекулы была расшифрована Karl Meyer и его коллегами в 1950-е. Сейчас все знают, что гиалуронат является длинной полимерной молекулой, состоящей из дисахаридных звеньев, компонентами которых являются N-ацетил-D-глюкозамин и D-глюкуроновая кислота, связанные между собой В1-4 и В1-3 связями. Karl Meyer не пользовался стандартным методом для исследования структуры интактного полисахарида. Вместо этого он проводил гиалуронидазное расщепление полисахарида, получив смесь дисахаридов и олигосахаридов, которую ему удалось полностью охарактеризовать. На основании полученных им результатов он и сделал свой вывод о возможной структуре исходной полимерной молекулы.

Конформационный анализ «волокон», состоящих из гиалуроната был впервые предпринят с использованием метода рентгеновской кирсталлографии. На конференции в г. Турку в 1972 году шли горячие споры между группами специалистов о том, имеет ли гиалуронат спиральную структуру или нет. Очевидно, что гиалуронат может формировать спирали различной структуры в зависимости от ионного состава растворителя и доли воды в нем. В 70-е и 80-е годы в литературе появлялись самые различные версии структуры гиалуроната.

Прорывом в этой области стала работа John Scott. Опираясь на то, что гиалуронат обладает малой реакционной способностью при пероксидазном окислении в водном растворе, он сделал вывод о том, что в воде он принимает конформацию с внутрицепочечными водородными связями. В дальнейшем его гипотеза нашла свое подтверждение при ЯМР-анализе, а в 1927 году Atkins с соавторами охарактеризовали конформацию как двойную спиральную.

ФИЗИЧЕСКИЕ И ХИМИЧЕСКИЕ СВОЙСТВА

Пятьдесят лет назад не была известна химическая структура гиалуроната и его макромолеуклярные свойства - масса, гомогенность, форма молекулы, степень гидратированности и взаимодействия с прочими молекулами. В последние 20 лет это стало объектом внимания A. G. Ogston и его сотрудников в Оксфорде, доктора Balazs с коллегами в Бостоне, Torvard С Laurent, работающего в Стокгольме, и еще нескольких лабораторий.

Основной проблемой являлось выделение гиалуроната, очищенного от белков и прочих компонентов, которое необходимо проводить перед любыми физическими методами исследования. Всегда имеется риск деградации полимерной структуры в процессе очистки. Ogston использовал технику ультрафильтрации, предположив, что свободные белки преодолеют фильтр, а белки, связанные с гиалуронатом , будут задержаны фильтром. Объектом исследования стал комплекс с содержанием белка равным 30%. Другие авторы пытались использовать разнообразные методы физической, химической и ферментативной очистки, которые позволяли снижать содержание белка до нескольких процентов. В то же время результаты физико-химического анализа дали более полное описание молекулы гиалуроната . Ее молекулярный вес близок к нескольким миллионам, хотя разброс между образцами был достаточно высок. Рассеивание света показало, что молекула ведет себя как случайным образом скрученная, достаточно плотно упакованная цепь с радиусом изгиба порядка 200 нм. Упакованность и малоподвижность цепи связана с наличием внутрицепочечных водородных связей, о которых уже говорилось выше. Случайно скрученная структура полностью соответствует полученному соотношению вязкости и молекулярной массы вещества. Ogston и Stanier использовали методы седиментации, диффузии, разделения в зависимости от градиента скорости сдвига и вязкости а также метод двойного преломления, которые показали, что молекула гиалуроната имеет форму высоко гидратированной сферы, что вполне отвечает известным свойствам молекул с упаковкой в виде случайно скрученной спирали.

АНАЛИТИЧЕСКИЕ МЕТОДИКИ

Единственно возможным путем количественного исследования гиалуроновой кислоты было выделение полисахарида в чистом виде и измерение содержания в нем уроновой кислоты и/или N-ацетилглюкозамина. Методами выбора в данном случае являлись карбазольный методы Дише для оценки содержания уроновой кислоты и реакция Эльсона-Моргана на уровень гексозамина.

В данном случае трудно переоценить важность использования карбазольного метода. При анализе гиалуроната иногда приходилось использовать миллиграммы вещества.

Следующим шагом стало открытие специфичных ферментов. Гиалуронидаза грибов Streptomyces действовала только на гиалуронат , при этом образовывались ненасыщенные гекса- и тетрасахариды. При анализе содержания гиалуроната можно было использовать это свойство грибов, особенно при наличии в среде других полисахаридов и примесей, а ненасыщенная форма гиалуроновой кислоты может использоваться для снижения лимита обнаружения продукта. Ферментативный метод значительно повысил чувствительность обнаружения гиалуроната, доведя ее до уровня микрограммов.

Последним этапом стало использование аффинных белков, специфично связывающихся с гиалуронатом. Tengblad использовал гиалуронат-связывающие белки из хрящей, а Delpech в дальнейшем использовал гиалуронектин, выделенный из головного мозга. Эти белки могут использоваться при анализе по аналогии с иммунологическими методами, а после разработки этого метода точность количественного определения гиалуроната возросла до уровня нанограммов, что позволило определять содержание гиалуроната в образцах тканей и физиологических жидкостях. Метод Tengblad стал основой для большей части работ Uppsala, выполненных позже.

ВИЗУАЛИЗАЦИЯ ГИАЛУРОНАТА

Обнаружение гиалуроната в срезах тканей тесно связано с анализом полимеров в тканевой жидкости. С самого начала использовались методы неспецифического окрашивания со стандартными красителями. John Scott удалось повысить специфичность по такому же принципу, которым он руководствовался при разработке метода фракционирования анионных полисахаридов в детергентах. Он окрашивал их красителем алциановый синий в разных ионных концентрациях, при этом ему удалось добиться различимого окрашивания разных полисахаридов. В дальнейшем он перешел на использование купромеронового синего.

В то же время гиалуронат можно хорошо выявлять на срезах ткани с помощью специфично связывающихся с ним белков. Первые сообщения о таком методе были опубликованы в 1985. Этот метод использовался с большим успехом и, благодаря ему, были получены ценные данные о распределении содержания гиалуроната в разных органах и тканях.

Гиалуронат также может быть обнаружен при электронной микроскопии. На первых изображениях, которые были опубликованы Jerome Gross к сожалению, не удалось увидеть каких-либо тонких деталей структуры. Первой хорошо объяснявшей результаты работой можно считать статью Fessler и Fessler. В ней было указано, что гиалуронат имеет протяженную одноцепочечную структуру.

Затем Robert Fraser описал еще один изящный метод визуализации околоклеточно расположенного гиалуроната . Он добавлял суспензию частиц гиалуроната к культуре фибробластов. Частицы не были обнаружены в толстом слое, окружающем культуру фибробластов. Таким образом было показано, что в околоклеточном пространстве имеется гиалуронат, подвергающийся расщеплению под действием гиалуронидазы.

ЭЛАСТИЧНОСТЬ И РЕОЛОГИЯ

Исходя из размеров одной из самых крупных молекул гиалуроната , несложно предположить, что при концентрации порядка 1 г/л они практически полностью насыщают раствор. При высоких концентрациях молекулы перепутываются, а раствор представляет собой некую сеть из цепей гиалуроната. Точка полимеризации определяется достаточно легко - это момент насыщения раствора, после которого его вязкость резко увеличивается по мере увеличения концентрации. Еще одним свойством раствора, которое зависит от его концентрации является скорость сдвига вязкости. Это явление описали Ogston и Stanier. Эластические свойства раствора изменяются по мере нарастания концентрации и молекулярной массы полимеров. Текучесть чистого гиалуроната была впервые определена Jensen и Koefoed, и более подробный анализ вязкости и эластичности раствора был выполнен Gibbs et al.

Является ли такое интересное поведение раствора следствием сугубо механического переплетения цепочек полимеров или оно связано и с их химическим взаимодействием? В ранних работах, опубликованных Ogston, обсуждались возможные взаимодействия, опосредованные через белки. Welsh с соавторами получил указания на существование взаимодействий цепочек между собой. Это было достигнуто путем добавления коротких цепочек гиалуроната (60 дисахаридов) к раствору, что вызывало уменьшение его эластичности и вязкости. Очевидно, что при этом происходило конкурентное взаимодействие коротких и длинных цепей. В более поздних работах John Scott было показано, что конформация гиалуроната с наличием гидрофобных связей между цепочками хорошо соответствовала склонности гиалуроната к формированию спиралей с находящимися рядом молекулами, которые стабилизировались гидрофобными связями. Таким образом, наиболее вероятным является межцепочечное взаимодействие, которое во многом и определяет реологические свойства гиалуроната .

ФИЗИОЛОГИЧЕСКАЯ РОЛЬ ГИАЛУРОНОВЫХ ПОЛИМЕРОВ

Открытие переплетение цепочек гиалуроната при нарастании концентрации, которое может происходить в тканях, стало основой для предположения, что гиалуронат может быть задействован во многих физиологических процессах за счет создания большой трехмерной сети цепочек. Обсуждались самые разнообразные свойства таких сетей.

Вязкость. Очень высокая вязкость концентрированных растворов гиалуроната, а также зависимость сдвига от вязкости, могут быть использованы для суставной смазки. Гиалуронат всегда присутствует во всех пространствах, разделяющих подвижные элементы организма - в суставах и между мышц.

Осмотическое давление. Осмотическое давление растворов гиалуроната в значительной мере зависит от их концентрации. При высоких концентрациях коллоидно-осмотическое давление такого раствора оказывается выше, чем у растворов альбуминов. Это свойство может быть использовано в тканях для поддержания гомеостаза.

Сопротивление потоку . Плотная сеть цепочек является достаточно хорошим препятствием току жидкости. Гиалуронат действительно может формировать препятствия для тока жидкости в тканях, что впервые было показано Day.

Исключенный объем. Трехмерная сеть цепочек вытесняет из раствора все остальные макромолекулы. Доступный объем может быть измерен в опыте диализного уравнивания раствора гиалуроната и буферного раствора, при этом оказалось, что полученный эффект совпал с расчетным по данным теоретических исследований, проведенных Ogston. Эффект исключения обсуждался в связи с разделением белка, содержащегося в сосудистом русле и внеклеточном пространстве, однако он также рассматривался и в качестве механизма накопления физиологических и патологических молекул в соединительной ткани. Исключение полимеров снижает растворимость многих белков.

Диффузионный барьер. Движение макромолекул через раствор гиалуроната может быть измерено при седиментационном и диффузионном анализе. Чем больше молекула тем ниже будет скорость ее движения. Этот эффект связали с формированием в тканях диффузионных барьеров. Например, околоклеточный слой гиалуроната может защищать клетки от воздействия макромолекул, выделяемых другими клетками.

ГИАЛУРОН-СВЯЗЫВАЮЩИЕ БЕЛКИ (ГИАЛАДГЕРИНЫ)

Протеогликаны. До 1972 года считалось, что гиалуронат является инертным соединением и не взаимодействует с другими макромолекулами. В 1972 Hardingham и Muir показали, что гиалуронат может связываться с протеогликанами хрящевой ткани. Исследования Hascall и Heinegard показали, что гиалуронат может специфично связываться с N-концевым доменом глобулярной части протеогликанов и соединительных белков. Данная связь является достаточно прочной и на одну цепь гиалуроната могут садиться несколько протеогликанов, в результате чего в хряще и иных тканях формируются крупные агрегации молекул.

Рецепторы гиалуроната. В 1972 Pessac и Defendi и Wasteson с соавторами показали, что суспензии некоторых клеток начинают агрегировать при добавлении гиалуроната. Это было первым сообщением, указывавшим на специфичное связывание гиалуроната с поверхностью клеток. В 1979 Underhill и Toole показали, что гиалуронат действительно связывается клетками, а в 1985 году был выделен отвечающий за это взаимодействие рецептор. В 1989 году сразу 2 группы авторов опубликовали работы, в которых было показано, что рецептор хоуминга лимфоцитов CD44 обладает способностью связываться с гиалуронатом в хрящевой ткани. Вскоре было показано, что рецептор, выделенный Underhill и Toole был полностью идентичен CD44. Еще одним гиалуронат -связывающим белком, выделенным позднее из супернатанта культуры клеток 3T3 в 1982 году Turley с соавторами оказался РГРП (рецептор гиалуроната, опосредующий подвижность). После этих работ был открыт еще целый ряд гиаладгеринов.

РОЛЬ ГИАЛУРОНАТА В КЛЕТКЕ

Вплоть до открытия гиаладгеринов считалось, что гиалуронат оказывает влияние на клетки только за счет физических взаимодействий. Данные о том, что гиалуронат может играть роль в биологических процессах были единичными и, в большинстве своем, были построены на отсутствии или наличии гиалуроната при разных биологических процессах. Многие из спекуляций того времени были построены на методах неспецифического гистологического окрашивания.

В начале 1970-х в Бостоне было выполнено очень интересное исследование. Bryan Toole и Jerome Gross показали, что во время регенерации конечности у головастиков гиалуронат синтезируется в самом начале, а затем его количество уменьшается под действием гиалуронидазы, при этом происходит замещение гиалуроната хондроитинсульфатом. Таким же образом развиваются события и при формировании роговицы у цыпленка. Toole указал, что накопление гиалуроната совпадает с периодами миграции клеток в ткани. Как уже было сказано выше, Toole также провел первые исследования мембранно-связанных гиаладгеринов, а с открытием рецепторов гиалуроната у нас есть все больше оснований полагать, что гиалуронат играет роль регуляции клеточной активности, например, при движении клеток. В последние 10 лет можно наблюдать всплеск числа публикаций, посвященных роли гиалуроната в миграции клеток, митозе, воспалении, опухолевом росте, ангиогенезе, оплодотворении и т.д.

БИОСИНТЕЗ ГИАЛУРОНАТА

Исследования биосинтеза гиалуроната можно условно разделить на 3 фазы. Первым автором и наиболее выдающимся ученым в первую фазу был Albert Dorfman. Он и его коллеги еще в начале 50-х описали источник моносахаридов, которые встраивались в гиалуроновые цепочки стрептококков. В 1955 году Glaser и Brown впервые показали возможность синтеза гиалуроната отдельной синтетической системой вне клетки. Они использовали фермент, выделенный из клеток куриной саркомы Rous и вводили в состав гиалуроновых олигосахаридов меченую изотопом 14С УТФ-глюкуроновую кислоту. Группа Dorfman также выделила молекулы-предшественники УТФ-глюкуроновой кислоты и УТФ-N-ацетилглюкозамина из экстракта стрептококков, а также синтезировала гиалуронат , пользуясь для этого ферментативной фракцией, выделенной из стрептококков.

Во второй фазе стало понятно, что гиалуронат должен синтезироваться по пути, отличному от гликозаминогликанов. Синтез гиалуроната, в отличие от сульфатированных полисахаридов, не требует активного синтеза белка. Ответственная за это синтаза расположена в мембране протопласта бактерий и плазматической мембране эукариотических клеток, но не в аппарате Гольджи. Синтетический аппарат, предположительно расположен на внутренней стороне мембраны, так как он оказался нечувствительным к воздействию внеклеточных протеаз. Кроме того, гиалуроновая цепочка пронизывает мембрану, так как воздействие на клетки гиалуронидазы усиливало продукцию гиалуроната . В 80-ые годы были предприняты несколько безуспешных попыток выделить синтазу из эукариотических клеток.

В начале 90-ых было показано, что гиалуронат -синтаза является фактором вирулентности стрептококков группы А. Взяв эти данные за основу, две группы авторов смогли определить ген и локус, отвечающий за синтез гиалуроновой капсулы. Вскоре удалось и клонировать ген этой синтазы и полностью его просеквенировать. Гомологичные белки, выделенные в последние годы у всех позвоночных, дали ценную информацию о ее строении. Важной областью исследования может стать изучение механизмов регуляции активности этой синтазы.

МЕТАБОЛИЗМ И ДЕГРАДАЦИЯ ГИАЛУРОНАТА

Обнаружение гиалуроната в крови, а также его переноса от тканей по лимфатической системе стало основой для проведения совместного исследования, проводившегося доктором Robert Fraser в Мельбурне и лабораторией в г. Уппсала. Следовые количества полисахарида, меченого тритием по ацетильной группе были обнаружены в крови после введения его кроликам и людям, а метка соединения исчезала с периодом полувыведения равным нескольким минутам. Вскоре стало понятно, что большая часть радиации была накоплена печенью, где полимер быстро подвергался расщеплению. Меченая тритием вода обнаруживалась в крови через 20 минут. Авторадиограммы показали, что накопление радиации происходило также в селезенке, лимфоузлах и костном мозге. Методом фракционирования клеток было также показано, что в печени накопление происходило в основном в эндотелии синусов, что было позднее подтверждено при исследовании in vitro и при радиографии in situ. На этих клетках имеется рецептор для эндоцитоза гиалуроната, который принципиально отличается от прочих гиалуронат-связывающих белков. Далее полисахарид расщепляется в лизосомах. Исследования гиалуроната проводились и в других тканях, и теперь существует цельная картина метаболизма этого полисахарида.

В последнее время еще один аспект катаболизма гиалуроната стал объектом большого числа исследований. Из работ Gunther Kreil (Австрия) и Robert Stern и его коллег (Сан-Франциско) стали известны структуры и свойства различных гиалуронидаз. Эти данные стали основой для исследований, прояснивших биологическую роль этих ферментов.

ГИАЛУРОНАТ ПРИ РАЗЛИЧНЫХ ЗАБОЛЕВАНИЯХ

С самого начала интерес ученых был прикован к свойствам гиалуроната, содержащегося в суставной жидкости, особенно к изменению его уровня при заболеваниях суставов. Было также показано, что гиперпродукция гиалуроната наблюдается при целом ряде заболеваний, например, при злокачественных опухолях - мезотелиомах, однако в то время еще не существовало достаточно точных и чувствительных методов обнаружения гиалуроната. Такая ситуация имела место вплоть до 1980 годов, когда были разработаны новые аналитические методики, что вновь привлекло интерес ученых к колебаниям содержания гиалуроната при разных заболеваниях. Были определены содержание гиалуроната в крови в норме и при патологии, особенно при циррозе печени. При ревматоидном артрите содержание гиалуроната в крови возрастало при физических нагрузках, особенно по утрам, что давало объяснение симптому «утренней скованности» в суставах. При различных воспалительных заболеваниях уровень гиалуроната в крови повышался как местно, так и системно. Органные дисфункции также могли быть объяснены накоплением гиалуроната, что вызывало интерстициальные отеки тканей.

КЛИНИЧЕСКОЕ ПРИМЕНЕНИЕ

Основной прорыв в медицинском использовании гиалуроната целиком является заслугой д-ра Balazs. Он разработал основные положения и идеи, первым синтезировал форму гиалуроната, которую хорошо переносили больные, продвигал идею промышленного производства гиалуроната и популяризовал идею применения полисахаридов в качестве лекарственных средств.

В 50-ые годы Balazs сконцентрировал усилия на изучении состава стекловидного тела и начал проводить опыты с заменителями для возможного протезирования при лечении отслойки сетчатки. Одним из наиболее серьезных препятствий на пути применения гиалуроновых протезов стала высокая сложность выделения чистого гиалуроната, свободного от всех примесей, вызывающих воспалительную реакцию.

Balazs разрешил эту проблему и получившийся в итоге препарат получил название НВФ-NaГУ (невоспалительная фракция гиалуроната натрия). В 1970 гиалуронат был впервые введен в суставы беговым лошадям, страдавшим от артритов, причем был получен клинический выраженный ответ на лечение с уменьшением симптомов заболевания. Двумя годами позже Balazs смог убедить руководство компании Pharmacia AB в г. Уппсала начать производство гиалуроната для использования в клинической и ветеринарной практике. Miller и Stegman по совету д-ра Balazs начали использовать гиалуронат в составе имплантируемых внутриглазных линз и гиалуронат быстро стал одним из самых употребительных компонентов в хирургической офтальмологии, получив торговое название Healon®. С того момента были предложены и испытаны многие другие варианты использования гиалуроната. Его производные (например, поперечно структурированные гиалуронаты ) также были испытаны для использования в клинике. Особенно хочется отметить, что еще в 1951 году Balazs уже сообщал о биологической активности самых первых из полученных тогда производных гиалуроната.

ЗАКЛЮЧЕНИЕ

В данном докладе нам удалось охватить лишь основные и наиболее значимые события в истории исследования гиалуроната, и еще многие другие интересные факты и данные будут обсуждаться на нашем веб-сайте. Из представленных статей будет ясно, что исследования гиалуроната становятся все более актуальными и необходимыми. Сегодня ежегодно в научной литературе публикуется от 300 до 400 статей, посвященных гиалуронату .

Первая международная конференция, целиком посвященная гиалуронату, проводилась в г. Сен-Тропез в 1985 году, после чего были проведены конгрессы в Лондоне (1988), Стокгольме (1996) и Падуе (1999).

Рост интереса связан, во многом, с успешными работами Endre Balazs, который сделал очень много в области исследования свойств гиалуроната, получил самые первые данные о нем, указал на возможность клинического применения гиалуроната и является вдохновителем, подвигающим научное сообщество на новые исследования.

Поделиться: